本发明专利技术公开了一种利用线性调频信号测量超声波传播时间的方法,包括以下步骤:通过线性调频信号发生器产生激励信号激励发射换能器发射超声波,发射超声波信号穿过待测材料后被接收换能器接收后再进行小波滤波处理,接着再将超声波信号左移,将处理后的超声波信号与发射超声波信号相乘得到乘积信号,对乘积信号进行傅立叶变换得到该乘积信号的幅度谱并利用最大值函数确定该幅度谱中峰值的频率,最后计算超声波在待测材料中的传播时间;本发明专利技术只需要进行一次傅立叶变换FFT和信号乘法运算,运算大大降低,从而实现方法周期短、效率高;采用线性调频信号激发超声波脉冲,提高了超声波的穿透能力和超声波检测的时间分辨率,从而提高了检测准确率。
【技术实现步骤摘要】
本专利技术涉及一种在超声波无损检测
中超声波传播时间的测量方法,具体 是涉及一种。
技术介绍
超声波是无损检测中应用最广泛的方法之一,在超声波无损检测中,常用的方法 是依据超声波在待测材料中的传播时间或传播速度(等于传播距离除以传播时间)测定待 测材料的动态杨氏模量、密度、含水率、裂缝和孔洞等,由于这种方法具有实现简单、使用方 便等优点,目前已经获得广泛应用,因此准确测量超声波在待测材料中的传播时间具有非 常重要的学术和实际意义。 超声波在待测材料中的传播时间与超声波的穿透能力密切相关,线性调频信号具 有较大的时间带宽积,利用线性调频信号激发超声波脉冲,不仅能够提高超声波的穿透能 力还可以提高超声波检测的时间分辨率。利用线性调频信号激发超声波脉冲,超声波经过 待测材料内部后到达接收端时,首先需要在接收端采用脉冲压缩和匹配滤波,脉冲压缩的 本质是计算接收信号和发射信号的复共轭之间的相关函数,传统的实现方法是:在频域中 实现时,先要将接收信号的傅立叶变换FFT值与发射波形的傅立叶变换FFT值的复共轭相 乘,然后再变换到时域获得,这样需要进行两次傅立叶变换FFT、一次傅立叶反变换iFFT和 信号乘法运算;如果在时域中实现时,则需要更大的运算量。从而造成实现方法整个过程时 间长、效率低、准确率不高。 因此,需要提出一种新型的超声波传播时间测量方法。
技术实现思路
专利技术目的:为了克服现有技术中存在的不足,本专利技术提供一种运算量小、时间短效 率高以及准确率高的。 技术方案:为实现上述目的,本专利技术的利用线性调频信号测量超声波传播时间的 方法,在待测材料两端分别放置发射换能器和与该发射换能器匹配的接收换能器,并在该 发射换能器一侧放置线性调频信号发生器和功率放大器, 所述方法包括以下步骤: S1首先通过所述线性调频信号发生器产生激励信号; S2该激励信号经过所述功率放大器放大后激励所述发射换能器发射超声波,放 大后的激励信号的能量能够激励所述发射换能器发射超声波,该发射超声波信号表示为 ux(t), 式中,A为信号幅度,&为中心频率,B为带宽,T为信号持续时间;S3所述发射超声波信号ux(t)穿过待测材料后被所述接收换能器接收;S4对所述接收换能器接收到的超声波信号再进行小波滤波处理,得到处理后的超 声波信号表不为uy(t);S5利用短时能量方法估算超声波的传播时间f并将处理后的超声波信号uy(t)左 移%得到再次处理后的超声波信号Uy'(t),uy' (t) =uy (t+t〇) (2); S6将再次处理后的超声波信号uy'(t)与所述发射超声波信号ux(t)相乘得到乘 积f目号um(t),um(t) =ux(t)*uy,(t) (3)S7对所述乘积信号um(t)进行傅立叶变换FFT,得到该乘积信号um(t)的幅度谱并 利用最大值函数确定该幅度谱中峰值的频率fp;S8计算超声波在待测材料中的传播时间t,计算公式如下: 进一步地,所述步骤S4具体包括以下步骤: S41首先采用dbl小波基对所述接收换能器接收到的超声波信号进行三层分解;S42然后对每一层小波系数进行软阈值处理;S43最后用处理后的小波系数重构所述接收换能器接收到的超声波信号,重构后 的超声波信号表示为Uy (t)。 进一步地,所述步骤S5中利用短时能量方法估算超声波的传播时间具体包括以 下步骤:S51从左至右采用矩形滑动窗口计算处理后的超声波信号uy(t)的短时能量 E(t),计算公式如下:式中,tQ为矩形滑动窗口的长度;S52如果E(t) >人,人为预先设定的阈值,则令f= h 进一步地,所述阈值A不少于2000,所述矩形滑动窗口的长度h为不少于0.lus。 进一步地,所述步骤S5中如果该超声波的传播时间f大于所述信号持续时间T的 0? 4 倍,令 =z' - 0.4r,否则令T。= 〇。 有益效果:本专利技术提出的方法与现有技术比较,具有的优点是: 1、与传统的脉冲压缩技术相比,本专利技术只需要进行一次傅立叶变换FFT和信号乘 法运算,运算大大降低,从而实现方法周期短、效率高; 2、本专利技术采用线性调频信号激发超声波脉冲,提高了超声波的穿透能力和超声波 检测的时间分辨率,从而提高了本专利技术方法的检测准确率。【附图说明】 图1是实现本专利技术方法的系统结构示意框图。 图2是本专利技术流程图。图 3 是当A= 100v,fQ= 1. 15MHz,B= 2.lMHz,T= 50us时发射超声波信号ux(t) 的频谱图。 图4是发射超声波信号ux(t)穿过厚度为6mm的木板后,接收换能器接收到的超 声波信号频谱图。 图5是对接收换能器接收到的超声波信号进行小波滤波处理,得到处理后的超声 波信号uy(t)的频谱图。 图6是将再次处理后的超声波信号uy'⑴与所述发射超声波信号ux⑴相乘得到 乘积信号um(t)的频谱图。 图7是对乘积信号um(t)进行傅立叶变换FFT,得到该乘积信号um(t)的幅度谱图。【具体实施方式】 下面结合附图对本专利技术作更进一步的说明。 本专利技术提出的的实现系统结构框 图如图1所示,在待测材料的两端分别放置发射换能器和与该发射换能器匹配的接收换能 器,采用发射换能器可实现在待测材料表面激发超声波脉冲信号,该超声波脉冲信号穿过 待测材料内部与待测材料内部的微结构相互作用,并经过界面的多次反射后,到达接收换 能器,超声波脉冲信号到达接收换能器后信号幅度被衰减,相位产生延迟;并在发射换能器 一侧放置线性调频信号发生器和功率放大器,所述线性调频信号发生器通过所述功率放大 器与所述发射换能器连接,在所述接收换能器一端放置前置放大器和数据采集卡,所述数 据采集卡通过所述前置放大器与所述接收换能器连接,所述数据采集卡与工业计算机连接 并且所述数据采集卡受工业计算机的控制,所述线性调频信号发生器与工业计算机连接并 且所述线性调频信号发生器受工业计算机的控制; 本专利技术提出的实现流程图如图2 所示,首先通过所述线性调频信号发生器产生激励信号;接着该激励信号经过所述功率放 大器放大后由放大后的激励信号激励所述发射换能器发射超声波,能够激励所述发射换能 器发射超声波的激励信号的能量必须足够大,所述发射换能器发射的超声波信号表示为 ux(t),,式中,A为信号幅度,&为中心频率,B为带宽,T为信 号持续时间; 接着发射的超声波信号ux(t)穿过待测材料后到达所述接收换能器,所述接收换 能器接收到的超声波信号此时幅度被衰减,相位产生延迟;接着所述接收换能器接收到的 超声波信号通过所述前置放大器到达数据采集卡,所述数据采集卡完成采集超声波信号工 作后,由工业计算机对超声波信号对所述接收换能器接收到的超声波信号再进行小波滤波 处理,得到处理后的超声波信号表示为uy(t),进行小波滤波处理具体包括以下步骤:首先 采用dbl小波基对所述接收换能器接收到的超声波信号进行三层分解;然后对每一层小波 系数进行软阈值处理;最后用处理后的小波系数重构所述接收换能器接收到的超声波信 号,重构后的超声波信号表示为uy(t); 接着利用短时能量方法估算超声波的传播时间f并将处理后的超声波信号uy(t) 左移%得到再次处理后的超声波信号Uy'(t),uy'(t)本文档来自技高网...
【技术保护点】
利用线性调频信号测量超声波传播时间的方法,其特征在于:在待测材料两端分别放置发射换能器和与该发射换能器匹配的接收换能器,并在该发射换能器一侧放置线性调频信号发生器和功率放大器,所述方法包括以下步骤:S1首先通过所述线性调频信号发生器产生激励信号;S2该激励信号经过所述功率放大器放大后激励所述发射换能器发射超声波,放大后的激励信号的能量能够激励所述发射换能器发射超声波,该发射超声波信号表示为ux(t),ux(t)=Acos(2πf0t+πBt2T)---(1)]]>式中,A为信号幅度,f0为中心频率,B为带宽,T为信号持续时间;S3所述发射超声波信号ux(t)穿过待测材料后被所述接收换能器接收;S4对所述接收换能器接收到的超声波信号再进行小波滤波处理,得到处理后的超声波信号表示为uy(t);S5利用短时能量方法估算超声波的传播时间并将处理后的超声波信号uy(t)左移τ0得到再次处理后的超声波信号uy'(t),uy'(t)=uy(t+τ0) (2);S6将再次处理后的超声波信号uy'(t)与所述发射超声波信号ux(t)相乘得到乘积信号um(t),um(t)=ux(t)*uy'(t) (3)S7对所述乘积信号um(t)进行傅立叶变换FFT,得到该乘积信号um(t)的幅度谱并利用最大值函数确定该幅度谱中峰值的频率fp;S8计算超声波在待测材料中的传播时间τ,计算公式如下:τ=fpB/T+τ0---(4).]]>...
【技术特征摘要】
【专利技术属性】
技术研发人员:蔺陆军,方益明,李剑,冯海林,
申请(专利权)人:浙江农林大学,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。