本发明专利技术公开了一种基于流体力学的无人机三维航路生成方法,属于航路规划领域,本发明专利技术首先计算得到沿X轴来流方向,位于原点的圆球障碍绕流流线,利用旋转平移矩阵得到平面中任意来流方向与任意障碍位置的绕流流线,根据流线是否满足部分重合条件采用两种方式将所有的流线合并成一条流线,之后根据无人机约束对三维流线进行处理得到无人机三维航路。本发明专利技术借鉴了自然界流水能够避开岩石的现象,将流体计算与航路规划相结合,同时考虑无人机飞行约束,在地形较为复杂时,能够规划出光滑且易于飞行的三维飞行避障航路。本发明专利技术地形建模简单,计算量小,满足无人机约束,实现方便。
【技术实现步骤摘要】
一种基于理想流体数值计算的无人机三维航路规划方法
本专利技术属于航路规划领域,具体地说是指一种基于理想流体数值计算的无人机三维航路规划方法。
技术介绍
由于无人机优越的灵活性、超高的性价比,使其无论在民用和军事领域均有着极其广泛的应用。无人机自主飞行技术中有一个重要的分支,就是无人机航路规划。无人机航路规划是指在特定的任务背景下,寻找使无人机由起始点按照一条较优的飞行路径,最终到达目标点的飞行航路。这种飞行航路应该满足无人机自身的物理约束条件,同时应该能够躲避障碍和敌方威胁。在防空技术日益完善的现代战争中,无人机航路规划是提高无人机作战能效,实施远程精确打击的有效手段。目前的航路规划方法有很多,大致可以分为五类:基于图形的方法、随机型搜索方法、决策型搜索方法、人工势场法和人工智能法。这五类方法又被细分为多种代表性方法,许多学者对此进行了深入和广泛的探讨。但是这五类方法均最早是从机器人航路规划提出的,因此对无人机航路规划的研究明显晚于而且少于机器人。对无人机进行航路规划必须考虑以下几点:首先,无人机的物理特点和机动性与机器人有很大不同,因此在进行航路规划时充分考虑到无人机约束,保证航路的可行性。其次,实际的无人机飞行环境远比机器人复杂,不仅涉及范围广、地形复杂,而且可能存在着敌方火炮或防空阵威胁,并且战场中的态势可能随时发生变化。最后,充分利用无人机的飞行能力,探索适合无人机飞行的三维航路规划方法,将会为无人机航路规划拓展出更实用、更有价值的应用前景。虽然国内外学者对无人机航路规划进行了大量研究,在一些方面取得了成功。但是这些研究成果在进行实际的工程应用时,不得不面临的问题是:1.航路不够光滑,存在折线,无人机实际飞行困难;2.无人机的三维航路规划方法较少,由机器人航路规划方法演变来的许多算法并不真正适合无人机使用。为此,专利技术以无人机航路规划问题为背景,充分考虑无人机约束,根据理想流体的绕流性质,将航路规划与流体数值计算的相结合,为无人机三维航路规划提出一种全新的解决思路和方法,最终为无人机的发展研究提供更有力的技术支撑,同时为无人机拓展更加广阔的应用前景。
技术实现思路
针对现有技术中存在的问题,本专利技术目的是要提出一种基于理想流体数值计算的无人机三维航路规划方法,通过本方法能够在地形较为复杂的情况下,快速的生成一条满足无人机约束的光滑三维避障飞行航路。为了实现上述目的,本专利技术所采用的技术方案为一种基于理想流体数值计算的无人机三维航路规划方法,其首先根据无人机约束对地形中的障碍进行预处理,之后计算出理想情况下沿X轴来流方向,位于原点的圆球障碍绕避障航路,最后利用叠加原理计算多障碍同时存在时的复杂地形无人机航路;具体步骤如下:步骤一:确定无人机的转弯半径,并与地形中的所有障碍半径进行比较,根据转弯半径和障碍半径的大小关系,以及障碍间的相对位置,进行地形的预处理,具体方法如下:1、障碍物重叠:计算与两个障碍同时内切的虚拟障碍,将虚拟障碍视为单个障碍进行避障,令Oi和Oi+1分别代表第i个和第i+1个障碍的球心,Ri和Ri+1分别表示Oi和Oi+1的半径,在线段OiOi+1上找到一点Onew,以该点为圆心,做出与圆Oi和Oi+1同时相内切的圆Onew,在三维情况下这种方法仍然是可行的,其中Onew必须满足下式条件|OnewOi|+Ri=|OnewOi+1|+Ri+1;2、单个障碍:2.1目标点和起始点的连线没有穿过障碍的中心,则将障碍的半径进行虚拟扩张,使障碍物半径大于等于无人机的转弯半径,根据不同的安全距离,虚拟障碍物半径的计算公式为:虚拟障碍物半径=无人机转弯半径+安全距离;2.2目标点和起始点的连线穿过了障碍的中心,则预处理分为“真实障碍半径比最小转弯半径小”和“真实障碍半径比最小转弯半径大”两种情况;2.2.1当“真实障碍半径比最小转弯半径小”时,令圆O1为真实障碍,将目标点和起始点的连线作为x轴,则x轴穿过了O1,设无人机最小转弯半径为R0,过真实障碍O1做垂直于x轴的直线交O1与A点,在AO1的延长线上找到一点O2,使得AO2=R0;那么O2和R0所确定的虚线圆O2,其为虚拟障碍,并且O1比O2的半径小,根据O2的设置方法,可知:O1是O2的内切圆,切点为A;在航路规划时,将O2作为障碍进行躲避,可以一方面满足无人机飞行约束,一方面避免了停滞点问题;2.2.2当“真实障碍的半径比最小转弯半径大”时,此时真实障碍的半径比无人机最小转弯半径大,只要在AO1的延长线上找到一点O2,以O2为圆心作圆,使得O1O2=r0,r0是设定的一个小量,则O2的半径大于O1,而O1的半径又大于最小转弯半径,因此该虚拟障碍的设计是满足无人机约束的,并且x轴不会穿过O2,解决了停滞点问题;将地形中的所有障碍,根据本步骤中的1和2进行预处理,预处理后的地形中进行航路规划得到的航路,满足无人机约束;步骤二:单个障碍时,根据定常忽略粘性的不可压缩理想流体,沿空间直角坐标系X轴来流方向作用于位于原点的圆球障碍绕流问题的解析解,在该直角坐标系下求得流速沿X、Y和Z轴的分量;对于空间中任意一点P,极坐标系建立在点P与X轴所构成的平面上;空间直角坐标系的坐标原点与平面二维极坐标系的极点重合,为点O,空间直角坐标系的X轴与平面二维极坐标系的极轴X′轴重合;在该极坐标系下流体的速度势为OP与极轴之间的夹角为θ角,点P与点O的距离为|OP|=r,V∞为流体的流速,a为圆球障碍的半径,在空间直角坐标系下,P的坐标为(x,y,z),则有用u、v和w代表三维情况下流速沿空间直角坐标系X、Y和Z轴的分量,则步骤三:计算每个障碍的加权系数;用m代表地形中障碍的数量,假设第i个障碍的半径为ai,其球心位置为定义距离函数bi如下:其中i=1...m(x,y,z)表示步骤二中P点的坐标,并定义插值函数α如下其中i=1...m;步骤四:结合步骤二和步骤三的方程组,对每个障碍进行方程组求解并最后求和,得到无人机三维飞行航路;结合步骤二和步骤三,得到如下方程组:对每个障碍,采用解微分方程组的方法对上式进行求解,得到每个障碍的流速(ui,vi,wi)和系数αi;根据如下求和公式,得到序列(u,v,w):其中i=1...m则序列(u,v,w)即是无人机的三维飞行航路。本专利技术的优点在于:(1)本专利技术提出一种基于理想流体数值计算的无人机三维航路规划方法,根据理想流体的绕流特性,采用数值计算的方法将流体计算与航路规划相结合,同时考虑无人机飞行约束,能够规划出光滑且易于飞行的无人机三维避障航路。(2)本专利技术提出一种基于理想流体数值计算的无人机三维航路规划方法,根据无人机约束,通过虚拟障碍的设计对地形进行预处理,使在该地形中规划出的航路无人机能够直接飞行,不需要额外的操作。(3)本专利技术提出一种基于理想流体数值计算的无人机三维航路规划方法,计算量小,满足无人机约束,航路光滑没有曲折。附图说明图1是本专利技术中障碍重叠时虚拟障碍的计算示意图;图2是本专利技术中真实障碍半径比最小转弯半径小时虚拟障碍的计算示意图;图3是本专利技术中真实障碍半径比最小转弯半径大时虚拟障碍的计算示意图;图4是本专利技术中理想流体单个障碍的绕流计算示意图。具体实施方式首先根据无人机约束对地形中的障碍进行预处理,之后本文档来自技高网...
【技术保护点】
一种基于理想流体数值计算的无人机三维航路规划方法,其特征在于:首先根据无人机约束对地形中的障碍进行预处理,之后计算出理想情况下沿X轴来流方向,位于原点的圆球障碍绕避障航路,最后利用叠加原理计算多障碍同时存在时的复杂地形无人机航路;具体步骤如下:步骤一:确定无人机的转弯半径,并与地形中的所有障碍半径进行比较,根据转弯半径和障碍半径的大小关系,以及障碍间的相对位置,进行地形的预处理;步骤二:根据定常忽略粘性的不可压缩理想流体,沿空间直角坐标系X轴来流方向作用于位于原点的圆球障碍绕流问题的解析解,在该直角坐标系下求得流速沿X、Y和Z轴的分量;对于空间中任意一点P,极坐标系建立在点P与X轴所构成的平面上;空间直角坐标系的坐标原点与平面二维极坐标系的极点重合,为点O,空间直角坐标系的X轴与平面二维极坐标系的极轴X′轴重合;在该极坐标系下流体的速度势为OP与极轴之间的夹角为θ角,点P与点O的距离为|OP|=r,V∞为流体的流速,a为圆球障碍的半径,在空间直角坐标系下,P的坐标为(x,y,z),则有用u、v和w代表三维情况下流速沿空间直角坐标系X、Y和Z轴的分量,则步骤三:计算每个障碍的加权系数;用m代表地形中障碍的数量,假设第i个障碍的半径为ai,其球心位置为定义距离函数bi如下:bi=(x2-bxi2)2+(y2-byi2)2+(z2-bzi2)2-ai]]>其中i=1...m(x,y,z)表示步骤二中P点的坐标,并定义插值函数α如下αi=Πj≠ibjbi+bj]]>其中i=1...m;步骤四:结合步骤二和步骤三的方程组,对每个障碍进行方程组求解并最后求和,得到无人机三维飞行航路。...
【技术特征摘要】
1.一种基于理想流体数值计算的无人机三维航路规划方法,其特征在于:首先根据无人机约束对地形中的障碍进行预处理,之后计算出理想情况下沿X轴来流方向,位于原点的圆球障碍绕避障航路,最后利用叠加原理计算多障碍同时存在时的复杂地形无人机航路;具体步骤如下:步骤一:确定无人机的转弯半径,并与地形中的所有障碍半径进行比较,根据转弯半径和障碍半径的大小关系,以及障碍间的相对位置,进行地形的预处理;步骤二:根据定常忽略粘性的不可压缩理想流体,沿空间直角坐标系X轴来流方向作用于位于原点的圆球障碍绕流问题的解析解,在该直角坐标系下求得流速沿X、Y和Z轴的分量;对于空间中任意一点P,极坐标系建立在点P与X轴所构成的平面上;空间直角坐标系的坐标原点与平面二维极坐标系的极点重合,为点O,空间直角坐标系的X轴与平面二维极坐标系的极轴X′轴重合;在该极坐标系下流体的速度势为OP与极轴之间的夹角为θ角,点P与点O的距离为|OP|=r,V∞为流体的流速,a为圆球障碍的半径,在空间直角坐标系下,P的坐标为(x,y,z),则有用u、v和w代表三维情况下流速沿空间直角坐标系X、Y和Z轴的分量,则步骤三:计算每个障碍的加权系数;用m代表地形中障碍的数量,假设第i个障碍的半径为ai,其球心位置为定义距离函数bi如下:其中i=1...m(x,y,z)表示步骤二中P点的坐标,并定义插值函数α如下其中i=1...m;步骤四:结合步骤二和步骤三的方程组,得到如下方程组:对每个障碍,采用解微分方程组的方法对上式进行求解,得到每个障碍的流速(ui,vi,wi)和系数αi;并最后求和,根据如下求和公式,得到序列(u,v,w):其中i=1...m则序列(u,v,w)即是无人机的三维飞行航路。2.根据权利要求...
【专利技术属性】
技术研发人员:梁宵,孟光磊,田丰,陈国栋,
申请(专利权)人:沈阳航空航天大学,
类型:发明
国别省市:辽宁;21
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。