本发明专利技术属于加速器设计技术,具体涉及一种加速器用束流均匀化六极磁铁。该六极磁铁在传统设计的基础上删除了相对的一对磁极的励磁线包,并缩短了这对磁极之间的距离,同时改变一对相邻磁极线包的电流方向。这种磁铁能够在X轴上所产生的磁场关于坐标原点对称,磁场的大小与位置的平方呈正比,能够对类三角密度分布的束斑提供很好的均匀化效果。
【技术实现步骤摘要】
一种加速器用束流均匀化六极磁铁
本专利技术属于加速器设计技术,具体涉及一种加速器用束流均匀化六极磁铁。
技术介绍
加速器产生的束流横向截面的粒子分布一般是高斯分布的,即轰击到靶上的粒子分布是不均匀的。在某些工业电子辐照场合,对束流辐照均匀度要求是很高,例如对半导体材料的辐照。此外,在重离子加速器产生的高功率密度的束流轰击靶的时候,为了降低靶的尺寸和实现靶的冷却,需要在束斑扩大的同时,将束流尽量整型为均匀分布的。因此,加速器束流的均匀化是一个非常重要的问题。目前,国内外采用的束流均匀化器件分为非线性多极铁和非线性阶梯场二极磁铁两类。非线性多极铁有八极铁和十二极铁等,非线性阶梯场二极磁铁分为单台阶和多台阶。由于非线性多极铁在进行束流均匀化的过程中引入了非常强的非线性效用,其结果不尽如人意。非线性阶梯场二极磁铁均匀化的目标是将束流边缘部分的粒子等密度平移到内部区域,但其所平移的束流是不均匀的,在平移叠加时,是高密度与较高密度叠加,低密度与较低密度的叠加,其叠加后的均匀度仍然不是很好。
技术实现思路
本专利技术的目的是针对现有技术的缺陷,提供一种加速器用束流均匀化六极磁铁结构,使束斑具有更好的均匀化效果。本专利技术的技术方案如下:一种加速器用束流均匀化六极磁铁,磁铁的六个磁极两两相对沿环形设置,其中,两个相对的磁极上不设置励磁线包,其余磁极上设置励磁线包并通入励磁电流;在两个设置励磁线包的相邻磁极内产生的磁场方向相反,两个设置励磁线包的相对磁极内产生的磁场方向相同,从而形成相对于磁铁中心线对称的磁场分布。进一步,如上所述的加速器用束流均匀化六极磁铁,其中,不设置励磁线包的相对磁极之间的距离小于设置励磁线包的相对磁极之间的距离。进一步,如上所述的加速器用束流均匀化六极磁铁,其中,所述的磁极内产生的磁场方向是指如果磁场方向指向磁铁中心为正方向,如果磁场方向离开磁铁中心为负方向。本专利技术的有益效果如下:本专利技术所提供的六极磁铁,是在传统六极磁铁的基础上删除了相对的一对磁极的励磁线包,并缩短了这对磁极之间的距离,同时改变一对相邻磁极线包的电流方向。这种磁铁能够在X轴上所产生的磁场关于坐标原点对称,磁场的大小与位置的平方呈正比,能够对类三角密度分布的束斑提供很好的均匀化效果。附图说明图1为本专利技术实施例中六极磁铁的结构示意图;图2为本专利技术实施例的六极磁铁磁场分布与现有技术的比较示意图;图3为采用本专利技术的六极磁铁形成的束流初始密度分布示意图;图4为束流的光路示意图;图5为光路末端束斑示意图。具体实施方式下面结合附图和实施例对本专利技术进行详细的描述。本专利技术是在传统六极磁铁的基础上进行的改进,传统六极磁铁的六个磁极两两相对沿环形对称设置,每个磁极外均设有励磁线包,而且相对的两个磁极之间的距离都是相等的,相邻磁极内的磁场方向相反,相对磁极内的磁场方向也相反,这种六极磁铁的磁场分布是关于经过磁铁中心线的平面对称的,如图2中的A曲线所示,磁场的大小与位置的平方成比例。如图1所示,本专利技术的技术方案是将六极磁铁的一对相对的磁极1、2上的励磁线包去掉,并将一对相邻的磁极3、4的励磁线包7、8相对于传统的六极磁铁的电流反向,使得设置励磁线包的4个磁极中的相邻磁极内的磁场方向相反,相对磁极内的磁场方向相同,从而形成一种关于磁铁中心线对称的磁场分布,磁铁中心线垂直于图1纸面,位于磁铁正中心。所述的磁极内产生的磁场方向是指如果磁场方向指向磁铁中心为正方向,如果磁场方向离开磁铁中心为负方向。磁场分布曲线为关于位置坐标的二次函数。传统的六极磁铁的磁场分布是关于经过磁铁中心线的平面对称的,如图2中的A曲线所示,磁场的大小与位置的平方成比例。本专利技术的磁场分布如图2中的B曲线所示,在中心点的一侧与A曲线相同,而另一侧与A曲线的绝对值相等,但方向相反。本专利技术的场分布可以对两边的边缘粒子都提供聚焦作用,相当于束流聚焦元件。传统的六极磁铁所形成磁场分布A曲线,对一边的粒子聚焦,另一边的则散焦,对束流有一个不均匀偏转的效应。相对于传统的六极磁铁,本专利技术的去掉励磁线包的两个磁极之间的距离需要相应减小,以便获得图2中理想的曲线B。也就是说,相对的两个磁极1、2之间的距离小于相对的两个磁极3、6以及相对的两个磁极4、5之间的距离,磁极3、6之间的距离以及磁极4、5之间的距离保持相等。本专利技术的磁铁可以对类三角密度分布的束斑提供很好的均匀化效果,高斯分布属于类三角分布的一种。实施例本实施例所提供的六极磁铁的磁极距离如图1所示,其中磁极3、6之间的距离与磁极4、5之间的距离相同,都是5cm,磁极1、2之间的距离为1.1cm,磁极1、2上不设置励磁线包,其余磁极3、4、5、6上设置励磁线包并通入励磁电流。在两个设置励磁线包7、10的相对磁极3、6内产生的磁场方向与另外两个设置励磁线包8、9的相对磁极4、5内产生的磁场方向相反,相对磁极3、6(或4、5)内产生的磁场方向相同,从而形成相对于磁铁中心线对称的磁场分布。束流的初始密度分布是高斯分布,如图3所示。束流光路如图4所示,视图上部分为X-Z平面的束包络,视图下部分为Y-Z平面的束包络,其中的S1和S2是本专利技术的六极磁铁,一个磁铁如图1的位置放置,另一个磁铁将图1的磁铁旋转90度放置。图4中最右侧的光路末端束斑如图5所示,在X和Y方向的束斑尺寸都为200mm的方形束斑。显然,本领域的技术人员可以对本专利技术进行各种改动和变型而不脱离本专利技术的精神和范围。这样,倘若对本专利技术的这些修改和变型属于本专利技术权利要求及其同等技术的范围之内,则本专利技术也意图包含这些改动和变型在内。本文档来自技高网...
【技术保护点】
一种加速器用束流均匀化六极磁铁,磁铁的六个磁极两两相对沿环形设置,其特征在于:两个相对的磁极(1、2)上不设置励磁线包,其余磁极(3、4、5、6)上设置励磁线包(7、8、9、10)并通入励磁电流;在两个设置励磁线包的相邻磁极内产生的磁场方向相反,两个设置励磁线包的相对磁极内产生的磁场方向相同,从而形成相对于磁铁中心线对称的磁场分布。
【技术特征摘要】
1.一种加速器用束流均匀化六极磁铁,磁铁的六个磁极两两相对沿环形设置,其特征在于:两个相对的磁极(1、2)上不设置励磁线包,其余磁极(3、4、5、6)上设置励磁线包(7、8、9、10)并通入励磁电流,不设置励磁线包的相对磁极(1、2)之间的距离小于设置励磁线包的相对磁极(3、6)之间的距离;在两个设置励磁...
【专利技术属性】
技术研发人员:李金海,任秀艳,曾自强,
申请(专利权)人:中国原子能科学研究院,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。