本发明专利技术公开了一种基于多特征融合的面向对象的建筑物变化检测方法,首先求得图像像素点的形态学建筑指数(MBI),纹理特征和慢特征分析图(SFA);利用MBI指数和纹理特征进行FNEA分割;然后求出每个对象的三个特征值,再作差,并利用K均值聚类算法求阈值,得到特征变化图;再利用AC指数进行后处理;利用熵值法对不同的特征变化图求权重,按照权重设定阈值求得变化图像;最后利用投票法进行后处理。得到变化检测结果。本发明专利技术利用MBI,SFA和纹理特征来进行建筑物的变化检测;把MBI和纹理特征值加入到FNEA分割中;提出AC指数和投票法进行后处。本发明专利技术可为高分辨率遥感图像应用与土地覆盖和城市扩张提供一种新途径。
【技术实现步骤摘要】
一种基于多特征融合的面向对象的建筑物变化检测方法
本专利技术属于遥感图像数据的信息提取
,具体涉及一种基于多特征融合的面向对象的建筑物变化检测方法。
技术介绍
随着经济发展和城市化进程的加快,人类的各种生产建设活动正在日益改变着城市及其周边的自然环境和土地覆盖类型。因此快速有效的监测这些变化信息,分析变化原因和影响结果,对我国的可持续发展具有重要意义。遥感图像变化检测技术就是根据同一地区不同时相的两幅遥感图像,来获取地表地物变化的一门技术,该技术的快速发展为更新地理空间数据发挥着重大的作用。遥感变化检测技术是数字图像处理方法、计算机视觉技术和人工智能、模式识别理论的综合应用。遥感图像变化检测包括三个层次:像元级变化检测、特征级变化检测和目标级变化检测。变化检测的三个层次各有优缺点,在具体的变化检测过程中要检测到哪个层次是根据任务的需要来确定的。像元级变化检测保持了尽可能多的原始信息,具有特征级和目标级层次上所不具备的细节信息,但像元级变化检测仅考虑像素属性的变化,而未考虑其空间等特征属性的变化;特征级变化检测不仅考虑到空间形状的变化,而且还考虑特征属性的变化,但特征级变化检测依赖于特征提取的结果,况且单独使用某一特征进行变化检测有可能造成很大的漏检和错检;目标级变化检测最大的优点是它接近于用户的需求,检测的结果可直接应用,它的不足之处在于目标提取的困难性。随着卫星技术的快速发展,使得高分辨率遥感图像的变化检测成为可能。分辨率在10m以内的高分辨率遥感图像(VeryHighResolutionImagery,VHR)已经广泛应用于社会经济的很多领域,中低分辨率遥感图像中的点目标在高分辨率图像中变成了面,图像包含更多、更丰富的地理和地形信息。高效利用高分辨率遥感图像丰富的地物细节变化信息、像元之间以及像元属性之间的相互关系,能有效地抑制自然地物变化和不同成像条件引起的信息干扰,因此对高分辨率遥感图像的变化检测研究具有重要的理论意义和现实意义。传统的遥感图像变化检测是基于像素的,如图像差值法、图像比值法。图像差值法和比值法对图像的质量和预处理要求相对较高,不可避免的几何配准误差、相对辐射校正精度、阴影等都是基于差异图像的高分辨率遥感图像变化检测中的典型问题。简单的单波段相减由于没有考虑波段之间的统计相关性,使得绝对值不同的数值相减得到同样大小的差值,不同像素灰度值之间相比得到同样大小的比值,忽略了不同地物在不同敏感波段存在的差异,导致潜在可利用信息的丢失。在这背景下,面向对象的变化检测方法能够将像元-像元之间的差异推广到对象-对象,把传统的以像素为单位的变化检测推广到以对象为单位的变化检测,最后提取变化/未变化信息。
技术实现思路
为了解决上述的技术问题,本专利技术提出了一种基于多特征融合的面向对象的建筑物变化检测方法。本专利技术所采用的技术方案是:一种基于多特征融合的面向对象的建筑物变化检测方法,其特征在于,包括以下步骤:步骤1:对所选区域的两幅不同时相的高分辨率遥感图像A和B进行预处理,主要包括几何纠正、辐射纠正、几何配准和图像裁剪;步骤2:计算A和B两幅图像的每个像素点的形态学建筑指数(MBI)、固定窗口的纹理特征和慢特征分析(SFA),得到图像A和B的MBI特征图像、纹理特征图像和SFA特征图像;步骤3:选取步骤1中的一幅图像采用基于改进的FNEA多尺度分割方法进行分割,得到一幅多尺度分割图像,并利用步骤2的计算结果来改进上述改进的FNEA多尺度分割方法进行分割,分割的结果是得到一个个对象;并由分割的结果得到每个对象对应像素点的坐标或索引,称为索引矩阵;然后按照此索引矩阵对步骤1中的另一幅图像进行分割,分割的结果使两幅图像具有同样大小的对象;步骤4:因步骤2中得到的MBI特征图像、纹理特征图像和SFA特征图像具有尺度不统一的特点,故采用单位标准差归一化方法对不同的特征图像进行特征优化;步骤5:对步骤4归一化后的结果,求每个对象的特征均值,以得到各个对象的特征图像;步骤6:对每个对象求其在不同时相的特征图像的差值,利用k均值聚类算法对三幅不同的差值图像求其阈值,使其阈值自动化,以此得到三幅不同特征的变化图像;步骤7:对步骤6中得到的三幅不同特征的变化图像进行AC指数后处理;步骤8:利用熵值法,对步骤7中得到的三幅不同特征的变化图像加不同的权重,再设定阈值,以得到变化检测结果;步骤9:利用基于投票法的多尺度融合方法对变化检测的结果进行处理,以得到更高的检测精度;步骤10:对步骤9得到的结果进行精度评定。作为优选,步骤1中所述的几何纠正采用基于多项式的遥感图像几何纠正,控制点选取分布均匀,重采样采用双线性内插法,最后得到误差要求标准为RMSE<0.5像素;所述的辐射纠正方法采用的是相对辐射归一化纠正。作为优选,步骤3中所述的选取步骤1中的一幅图像进行分割,选取方法为:当两幅图像分辨率不一致时,用空间分辨率高的图像来进行分割;当分辨率相同时,按照获取时相的时间顺序,选取后一时期的图像进行分割。作为优选,步骤3中所述的基于改进的FNEA多尺度分割方法,其具体实现过程为:从一个像元起步,先将单像元合并为较小的对象,然后把具有异质性最小的较小对象合并成较大的对象,这样不断合并,直到判断条件不成立,合并操作就终止,最终分割的结果中所有图像对象的平均异质性最小;在判断两相邻对象是否能够合并时,用总异质性值和先前设定好的尺度阈值进行比较,如果小于尺度阈值就合并,否则就结束合并操作;总的异质性h计算公式为:h=wspectral*hspectral+wshape*hshape+wMBI*hMBI+wtexture*htexture;其中,wspectral,wshape,wMBI,wtexture分别为光谱异质性hspectral、形状异质性hshape、MBI异质性hMBI和纹理异质性htexture对应的权重;MBI异质性和纹理异质性的计算方法和光谱异质性的计算方法原理相同,即计算每一波段的标准差与该波段权重的乘积,再把各个波段的值进行累加。作为优选,步骤6中所述的利用k均值聚类算法对三幅不同的差值图像求其阈值,其具体实现包括以下子步骤:步骤6.1:从数据集中随机选取k个图像单元作为初始聚类中心;步骤6.2:计算各个图像单元到聚类中心的光谱距离,将它们一一归类到最近的那个聚类中心所在的类;步骤6.3:计算新形成的每一个聚类的图像单元的光谱均值,从而得到新的聚类中心;步骤6.4:迭代实施步骤6.2和步骤6.3,直至前后两次的聚类中心没有任何变化,说明聚类调整结束,聚类准则函数已经收敛;当输入图像分别为归一化后的MBI特征图像、SFA特征图像和纹理特征图像时,用k均值二值聚类所得的结果,即将这些特征分为两个分离度最高的图像类别,即低相似性与高相似性类别;因此,由此得到的两个图像类别可分别对应于变化区域与未变化区域,即可得到三个阈值X,Y,Z。作为优选,步骤7中所述的AC指数后处理,具体的公式如下:AC=a*(area)/circle;其中,circle是对每一个检测为变化的对象进行圆形拟合,该圆形包含了该对象的所有被检测为变化建筑物的像素以及部分未变化的像素,area为圆形中该对象所有被检测为变化建筑物的像素,本文档来自技高网...
【技术保护点】
一种基于多特征融合的面向对象的建筑物变化检测方法,其特征在于,主要包括以下步骤:步骤1:对所选区域的两幅不同时相的高分辨率遥感图像A和B进行预处理,主要包括几何纠正、辐射纠正、几何配准和图像裁剪;步骤2:计算A和B两幅图像的每个像素点的形态学建筑指数(MBI)、固定窗口的纹理特征和慢特征分析(SFA),得到图像A和B的MBI特征图像、纹理特征图像和SFA特征图像;步骤3:选取步骤1中的一幅图像采用基于改进的FNEA多尺度分割方法进行分割,得到一幅多尺度分割图像,并利用步骤2的计算结果来改进多尺度分割算法进行分割,分割的结果是得到一个个对象;并由分割的结果得到每个对象对应像素点的坐标或索引,称为索引矩阵;然后按照此索引矩阵对步骤1中的另一幅图像进行分割,分割的结果使两幅图像具有同样大小的对象;步骤4:因步骤2中得到的MBI特征图像、纹理特征图像和SFA特征图像具有尺度不统一的特点,故采用单位标准差归一化方法对不同的特征图像进行特征优化;步骤5:对步骤4归一化后的结果,求每个对象的特征均值,以得到各个对象的特征图像;步骤6:对每个对象求其在不同时相的特征图像的差值,利用k均值聚类算法对三幅不同的差值图像求其阈值,使其阈值自动化,以此得到三幅不同特征的变化图像;步骤7:对步骤6中得到的三幅不同特征的变化图像进行AC指数后处理;步骤8:利用熵值法,对步骤7中得到的三幅不同特征的变化图像加不同的权重,再设定阈值,以得到变化检测结果;步骤9:利用基于投票法的多尺度融合方法对变化检测的结果进行处理,以得到更高的检测精度;步骤10:对步骤9得到的结果进行精度评定。...
【技术特征摘要】
1.一种基于多特征融合的面向对象的建筑物变化检测方法,其特征在于,主要包括以下步骤:步骤1:对所选区域的两幅不同时相的高分辨率遥感图像A和B进行预处理,主要包括几何纠正、辐射纠正、几何配准和图像裁剪;步骤2:计算A和B两幅图像的每个像素点的形态学建筑指数MBI、固定窗口的纹理特征和慢特征分析SFA,得到图像A和B的MBI特征图像、纹理特征图像和SFA特征图像;步骤3:选取步骤1中的一幅图像采用基于改进的FNEA多尺度分割方法进行分割,得到一幅多尺度分割图像,并利用步骤2的计算结果来改进上述改进的FNEA多尺度分割方法进行分割,分割的结果是得到一个个对象;并由分割的结果得到每个对象对应像素点的坐标或索引,称为索引矩阵;然后按照此索引矩阵对步骤1中的另一幅图像进行分割,分割的结果使两幅图像具有同样大小的对象;所述的基于改进的FNEA多尺度分割方法,其具体实现过程为:从一个像元起步,先将单像元合并为较小的对象,然后把具有异质性最小的较小对象合并成较大的对象,这样不断合并,直到判断条件不成立,合并操作就终止,最终分割的结果中所有图像对象的平均异质性最小;在判断两相邻对象是否能够合并时,用总异质性值和先前设定好的尺度阈值进行比较,如果小于尺度阈值就合并,否则就结束合并操作;总的异质性h计算公式为:h=wspectral*hspectral+wshape*hshape+wMBI*hMBI+wtexture*htexture;其中,wspectral,wshape,wMBI,wtexture分别为光谱异质性hspectral、形状异质性hshape、MBI异质性hMBI和纹理异质性htexture对应的权重;MBI异质性和纹理异质性的计算方法和光谱异质性的计算方法原理相同,即计算每一波段的标准差与该波段权重的乘积,再把各个波段的值进行累加;步骤4:因步骤2中得到的MBI特征图像、纹理特征图像和SFA特征图像具有尺度不统一的特点,故采用单位标准差归一化方法对不同的特征图像进行特征优化;步骤5:对步骤4归一化后的结果,求每个对象的特征均值,以得到各个对象的特征图像;步骤6:对每个对象求其在不同时相的特征图像的差值,利用k均值聚类算法对三幅不同的差值图像求其阈值,使其阈值自动化,以此得到三幅不同特征的变化图像;步骤7:对步骤6中得到的三幅不同特征的变化图像进行AC指数后处理;其中,AC=a*(area)/circle;circle是对每一个检测为变化的对象进行圆形拟合,该圆形包含了该对象的所有被检测为变化建筑物的像素以及部分未变化的像素,area为圆形中该对象所有被检测为变化建筑物的像素,a是用来调整该比值的大小;步骤8:利用熵值法,对步骤7中得到的三幅不同特征的变化图像加不同的权重,再设定阈值,以得到变化检测结果;步骤9:利用基于投票法的多尺度融合方法对变化检测的结果进行处理,以得到更高的检测精度;步骤10:对步骤9得到的结果进行精度评定。2.根据权利要求1所述的基于多特征融合的面向对象的建筑物变化检测方法,其特征在于:步骤1中所述的几何纠正采用基于多项式的遥感图像...
【专利技术属性】
技术研发人员:邵振峰,陶峰,
申请(专利权)人:武汉大学,
类型:发明
国别省市:湖北;42
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。