本发明专利技术公开了一种改进型零电流转换H6结构非隔离光伏并网逆变器及其控制方法,属于电力电子领域。在原有的零电流转换H6结构非隔离光伏并网逆变器基础上,谐振电感L7r、谐振电容C7r与辅助开关管S7r的源极串联后与主开关管S7并联,谐振电感L8r、谐振电容C8r与辅助开关管S8r的源极串联后与主开关管S8并联。二极管D的阳极与MOSFET管源极相连,阴极与MOSFET的漏极相连。而辅助开关S7r、S8r原来在AB、CD支路,现在移至与LC串联,借助LC单元在逆变器续流阶段可以使辅助开关管电流自动减小为零,从而实现主辅开关管零电流开通和关断。与此同时改变调制策略,调整滤波器的参数,减小漏电流,改进进网电能质量,提高电路工作效率。
【技术实现步骤摘要】
一种零电流转换H6结构非隔离光伏并网逆变器及其控制方法
本专利技术属于光伏并网发电技术电力电子
,具体涉及一种基于零电流转换H6结构非隔离光伏并网逆变器的改进和工作方法。
技术介绍
非隔离型光伏并网逆变器在分布式光伏发电兴中广泛的使用,不仅能高效将太阳能转变为电能,其结构轻便、方法简单还能大力推动电力行业的发展。现有的两种减少漏电流办法分别是:法一,基于最高变换效率电路结构来提高漏电流抑制性能。该方法是通过改进电路拓扑结、调制策略等来抑制漏电流;法二,基于最优漏电流抑制电路结构来提高电路变换效率。器件损耗主要包括导通损耗和开关损耗,但是开关器件越来越高频化使得开关损耗大大增大进而影响电路效率,而软开关的使用可以在一定程度上减小开关损耗,主要是通过在开关开通前后引入谐振过程来消除开关过程中的器件损耗。在软开关的所有不同类型的电路中零电流转换PWM电路因克服了之前软开关电路电流应力过大的缺点逐渐被研究者所应用。论文针对第二种方法提出的一种零电流转换H6结构非隔离型光伏并网逆变器不能实现辅助开关管的零电流关断并且进网电流存在一定的谐波的缺点,在其基础上提出了新的拓扑结构和控制方法来减小漏电流实现辅助开关管的零电流关断,同时通过续流阶段时续流回路的自由钳位可以使共模电压为一个定值。
技术实现思路
针对原有的零电流转换H6结构非隔离光伏并网逆变器的不足,本专利技术提出了一种新型零电流转换H6结构非隔离光伏并网逆变器的拓扑结构和控制方法。本专利技术的技术方案为:一种零电流转换H6结构非隔离光伏并网逆变器,包括2个带有反并联二极管的主开关管S7、S8,2个不带反并联二极管的辅助开关管S7r、S8r,2个谐振电感L7r、L8r,2个谐振电容C7r、C8r,2个直流侧电容C1、C2,2个续流阶段钳位二极管D5、D6,全桥逆变电路开关T1-T4;所述主开关管S7的发射极、谐振电感L7r、谐振电容C7r、辅助开关S7r的源极依次相串联,同理,主开关管S8的集电极、谐振电感L8r、谐振电容C8r、辅助开关S8r的漏极也依次相串联,直流侧电容C1的正极A端和辅助开关管S7r的漏极B端连接,直流侧电容C2的负极C端和辅助开关管S8r的源极D端连接,B端和D端之间设有二极管D,二极管D的正极和辅助开关管S8r的源极D端连接,续流阶段钳位二极管D5连接在直流侧电容C1的负极和主开关管S7发射极之间,续流阶段钳位二极管D5的正极和直流侧电容C1的负极相连,续流阶段钳位二极管D6连接在主开关管S8集电极和直流侧电容C2的正极之间;续流阶段钳位二极管D6的负极和直流侧电容C2的正极相连;续流阶段钳位二极管D5的负极端和D6的正极端并接全桥逆变电路;直流侧电容C1和直流侧电容C2相串联;所述全桥逆变电路为四个工频工作的全桥逆变电路开关T1-T4构成。进一步,所述全桥逆变电路的两个桥臂中点接入滤波器,所述滤波器包括电感L1、电感L2、电容C3,所述电感L1、电容C3、电感L2依次相串联。本专利技术方法的技术方案为:一种零电流转换H6结构非隔离光伏并网逆变器控制方法,采用SPWM调制策略,调制策略中选择方波作为载波,两个主开关S7、S8工作在高频且同时开通关断,辅助开关S7r、S8r也工作在高频同时开通关断状态,所述辅助开关管S7r、S8r的导通时间为Δ1+Δ,其中Lr、Cr是谐振电感和电容;电网电压分为正半周和负半周,在电网电压正半周该逆变器包括9个工作阶段:[t0~t1]:t0时刻,辅助开关管S7r、S8r零电流开通,t0时刻后,谐振电容C7r、C8r分别对谐振电感L7r、L8r放电,主开关电流iS7、iS8非线性减少直至t1时刻为0,进而实现主开关管零电流关断;[t1~t2]:t1时刻后,谐振电容C7r、C8r继续给谐振电感L7r、L8r放电,谐振电感电流iL7r、iL8r非线性增加,谐振电容电压uC7r、uC8r非线性减少;[t2~t3):t2时刻后,谐振电感L7r、L8r开始给谐振电容C7r、C8r反向充电,谐振电容电压uC7r、uC8r反向非线性增加,谐振电感电流iL7r、iL8r非线性减少,流过二极管D7、D8电流为0,二极管D7、D8截止;[t3]:二极管D7、D8的截止使得两个含有主辅开关管的谐振回路断路,二极管D导通;(t3~t4]:谐振电感L7r、L8r继续给谐振电容C7r、C8r反向充电,谐振电感电流iL7r、iL8r非线性减少,逆变器侧开关管反并联二极管则非线性增大;[t4~t5]:辅助开关管S7r、S8r上无电流流过,逆变器处于续流状态;[t5~t6]:t5时刻,主开关管S7、S8和辅助开关管S7r、S8r零电流开通,两条支路S7-L7r-C7r-S7r、S8-L8r-C8r-S8r形成闭合谐振回路,谐振电容C7r、C8r开始给谐振电感L7r、L8r反向充电,谐振电感电流iL7r、iL8r,反向非线性增大,谐振电容电压uC7r、uC8r非线性减小;[t6~t7]:谐振电感L7r、L8r开始给谐振电容C7r、C8r正向充电,t7时刻,辅助开关管S7r、S8r零电流关断;[t7~t8]:电路进入功率传递过程,待该时段结束后,进入下个周期重复。进一步,所述电网电压负半周时的工作阶段与正半周工作阶段原理相同。进一步,所述辅助开关管S7r、S8r的导通时间为Δ1+Δ,其中Lr是谐振电感,Cr是谐振电容。进一步,在控制过程中,还包括选择进网电流和输出电压作为新的控制变量,采用双闭环PI调节来实现对进网电流实现校正。本专利技术的有益效果为:在原有的零电流转换H6结构非隔离光伏并网逆变器基础上,谐振电感L7r、谐振电容C7r与辅助开关管S7r的源极串联后与主开关管S7并联,谐振电感L8r、谐振电容C8r与辅助开关管S8r的源极串联后与主开关管S8并联。二极管D的阳极与MOSFET管源极相连,阴极与MOSFET的漏极相连。而辅助开关S7r、S8r原来在AB、CD支路,现在移至与LC串联,如图1所示,借助LC单元在逆变器续流阶段可以使辅助开关管电流自动减小为零,从而实现主辅开关管零电流开通和关断。与此同时改变调制策略,调整滤波器的参数,减小漏电流,改进进网电能质量,提高电路工作效率。附图说明图1改进的电路拓扑结构;图2控制系统框图;图3系统结构框图主辅开关驱动信号产生逻辑;图4零电流转换H6结构非隔离型光伏并网逆变器在电网电压正半周时各阶段的等效电路图,其中:(a)t0~t1阶段等效电路图;(b)t1~t2阶段等效电路图;(c)t2~t3阶段等效电路图;(d)t3阶段等效电路图;(e)t3~t4阶段等效电路图;(f)t4~t5阶段等效电路图;(g)t5~t6阶段等效电路图;(h)t6~t7阶段等效电路图;(i)t7~t8阶段等效电路图。具体实施方式下面结合附图进一步说明本专利技术的具体实施方式。本专利技术将从以下几个方面着手改进达到减小漏电流,降低开关损耗,提高电路工作效率。具体内容包括:(1)在拓扑结构上,辅助开关S7r、S8r原来分别在A-B,C-D支路中,现将其移动到如图所示红色方框的位置来帮助辅助开关管实现在续流阶段零电流关断,直流侧部分由两个带有反并联二极管的IGBT主开关S7、S8,谐振电感L7r、L8r,谐振电容C7r、C8r以及两个本文档来自技高网...
【技术保护点】
一种改进型零电流转换H6结构非隔离光伏并网逆变器,其特征在于:包括2个带有反并联二极管的主开关管S7、S8,2个不带反并联二极管的辅助开关管S7r、S8r,2个谐振电感L7r、L8r,2个谐振电容C7r、C8r,2个直流侧电容C1、C2,2个续流阶段钳位二极管D5、D6,全桥逆变电路开关T1‑T4;所述主开关管S7、谐振电感L7r、谐振电容C7r、辅助开关S7r依次相串联,同理,主开关管S8、谐振电感L8r、谐振电容C8r、辅助开关S8r也依次相串联,直流侧电容C1的正极A端和辅助开关管S7r的漏极B端连接,直流侧电容C2的负极C端和辅助开关管S8r的源极D端连接,B端和D端之间设有二极管D,续流阶段钳位二极管D5连接在直流侧电容C1的负极和主开关管S7发射极之间,续流阶段钳位二极管D6连接在主开关管S8集电极和直流侧电容C2的正极之间;续流阶段钳位二极管D5的负极端和D6的正极端并接全桥逆变电路;所述全桥逆变电路为四个工频工作的全桥逆变电路开关T1‑T4构成。
【技术特征摘要】
1.一种零电流转换H6结构非隔离光伏并网逆变器,其特征在于:包括2个带有反并联二极管的主开关管S7、S8,2个不带反并联二极管的辅助开关管S7r、S8r,2个谐振电感L7r、L8r,2个谐振电容C7r、C8r,2个直流侧电容C1、C2,2个续流阶段钳位二极管D5、D6,全桥逆变电路开关T1-T4;所述主开关管S7的发射极、谐振电感L7r、谐振电容C7r、辅助开关S7r的源极依次相串联,同理,主开关管S8的集电极、谐振电感L8r、谐振电容C8r、辅助开关S8r的漏极也依次相串联,直流侧电容C1的正极A端和辅助开关管S7r的漏极B端连接,直流侧电容C2的负极C端和辅助开关管S8r的源极D端连接,B端和D端之间设有二极管D,二极管D的正极和辅助开关管S8r的源极D端连接,续流阶段钳位二极管D5连接在直流侧电容C1的负极和主开关管S7发射极之间,续流阶段钳位二极管D5的正极和直流侧电容C1的负极相连,续流阶段钳位二极管D6连接在主开关管S8集电极和直流侧电容C2的正极之间;续流阶段钳位二极管D6的负极和直流侧电容C2的正极相连;续流阶段钳位二极管D5的负极端和D6的正极端并接全桥逆变电路;直流侧电容C1和直流侧电容C2相串联;所述全桥逆变电路为四个工频工作的全桥逆变电路开关T1-T4构成。2.根据权利要求1所述的零电流转换H6结构非隔离光伏并网逆变器,其特征在于,所述全桥逆变电路的两个桥臂中点接入滤波器,所述滤波器包括电感L1、电感L2、电容C3,所述电感L1、电容C3、电感L2依次相串联。3.一种如权利要求1-2任意一项所述的零电流转换H6结构非隔离光伏并网逆变器控制方法,其特征在于:采用SPWM调制策略,调制策略中选择方波作为载波,两个主开关S7、S8工作在高频且同时开通关断,辅助开关S7r、S8r也工作在高频同时开通关断状态,电网电压分为正半周和负半周,在电网电压正半周该零电流转换H6结构非隔离光伏并网逆变器包括9个工作阶段:[t0~t1]:t0时刻,辅助开关管S7r、S8r零电流开通,t0时刻后,谐振电容C7r、C8r分别对谐振电感L7r、L8r放电,主开关电流iS7...
【专利技术属性】
技术研发人员:廖志凌,熊颖杰,崔清华,施卫东,
申请(专利权)人:江苏大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。