基于模糊TS模型的压电陶瓷执行器的预测控制方法和装置制造方法及图纸

技术编号:11811720 阅读:175 留言:0更新日期:2015-08-02 11:07
本发明专利技术提供一种基于模糊TS模型的压电陶瓷执行器的预测控制方法和装置,所述方法包括:获取压电陶瓷执行器的电压位移建模数据组;根据模糊TS模型,对所述电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数;确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律;获取压电陶瓷执行器在一个采样周期内的电压位移预测数据组;对所述子预测控制律执行加权平均、确定最终预测控制律、并作为控制输出函数。本发明专利技术所述方法能够实现对压电陶瓷执行器的实时精确的控制。

【技术实现步骤摘要】
基于模糊TS模型的压电陶瓷执行器的预测控制方法和装置
本专利技术涉及纳米定位领域,特别涉及一种基于模糊TS模型的压电陶瓷执行器的预测控制方法和装置。
技术介绍
压电陶瓷执行器具有较高的负载能力、较大的驱动能力、以及高精度的定位分辨率,能实现纳米尺度的操纵,广泛应用于微系统、通信、半导体技术、生物技术以及航空航天技术等领域,是微装配系统、原子力显微镜或高精度定位操作手术设备等的核心部件。在现有技术中,基于逆模型的迟滞补偿控制是应用最为广泛的压电陶瓷执行器控制方法,该方法首先建立迟滞特性的正模型,再由正模型求出迟滞特性的逆模型,最后在控制系统中加入使用该逆模型的前馈环节,实现对迟滞特性的补偿控制。当使用上述方法对压电陶瓷执行器进行控制时,需在控制过程中求取迟滞特性的逆模型,计算量很大,难以适用于响应速度很快的压电陶瓷执行器,尤其是目标跟踪信号变化速度很快时,该方法的控制性能不能令人满意;此外,迟滞特性与作用于压电陶瓷执行器上的电压信号的频率密切相关,这也进一步对逆模型的精度造成了影响。
技术实现思路
本专利技术的第一个方面是提供一种基于模糊TS(Takagi-Sugeno)模型的压电陶瓷执行器的预测控制方法,能够实现对压电陶瓷执行器的实时精确的控制,包括:获取压电陶瓷执行器的电压位移采样数据组;根据模糊TS模型,对所述电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数;确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律;获取压电陶瓷执行器在一个采样周期内的电压位移预测数据组;以所述电压位移预测数据组对所述线性子规则的满足度为权重对所述子预测控制律执行加权平均、确定最终预测控制律、并将所述最终预测控制律作为控制输出函数。本专利技术的第二个方面是提供一种基于模糊TS模型的压电陶瓷执行器的预测控制装置,包括:数据获取模块,用于获取压电陶瓷执行器的电压位移采样数据组,和获取压电陶瓷执行器在一个采样周期内的电压位移预测数据组;模糊TS模型建立模块,用于根据模糊TS模型,对所述电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数;子预测控制律确定模块,用于确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律;最终预测控制律确定模块,用于以所述电压位移预测数据组对所述线性子规则的满足度为权重对所述子预测控制律执行加权平均、确定最终预测控制律、并将所述最终预测控制律作为控制输出函数。本专利技术的有益效果为:本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法,通过采用模糊建模方法对压电陶瓷执行器以离线方式进行建模,减轻了在线建模的计算负担,并且在模糊模型确定以后,控制器就可以根据该模型进行设计子控制预测律,仅有最终控制律的解模糊算法需要在每一个采样时间内进行,减小了预测控制方法的计算量,因此能够实现对压电陶瓷执行器的实时精确的控制。附图说明图1是本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法实施例一的流程图;图2是本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法实施例一的原理图;图3是本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制装置实施例一的结构框图;图4是本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制装置实施例一的应用现场图。具体实施方式图1是本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法实施例一的流程图,如图1示,本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法,包括:S101、获取压电陶瓷执行器的电压位移采样数据组,优选的,包括:获取所述压电陶瓷执行器的电压和位移,并以线性向量形式表示电压位移采样数据组:X=[y(t-1),y(t-2),…,y(t-ny),u(t),u(t-1),…,u(t-nu)]∈Rp(1)其中ny为输出量y所对应的最大延迟,nu为输入量u所对应的最大延迟,所述获取所述压电陶瓷执行器的电压和位移包括:将压电陶瓷执行器的电压激励信号转换为变频率定幅值的正弦型信号,并将所述正弦型信号作用于所述压电陶瓷执行器以获得位移信号,采集所述电压激励信号和位移信号;优选的,所述压电陶瓷执行器可以采用德国PI公司的单自由度压电陶瓷执行器(型号P-753),所述压电陶瓷执行器的电压位移采样数据组和电压位移预测数据组的获取通过采用研华公司的数据采集卡作为数据采集设备来实现。S102、根据模糊TS模型,对所述电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数,优选的,包括:根据GK(Gustafson-Kessel)算法对电压位移采样数据组进行模糊聚类,求得IF-THEN表达式的模糊集Aip,获得线性子规则Ri:其中,x1等代表先行词向量X中的元素,Aip等为先行词对应的模糊集,该集合可在模糊聚类辨识中得到。fi(X)为第i个局部线性子模型,yi为其对应的模型输出。aij和bij为常数参数,ζi为偏差常数;并针对各所述线性子规则分别用最小二乘辨识法求得参数aij、bij和ζi;模糊TS模型对复杂非线性对象的建模方面具有独特优势;S103、确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律,优选的,包括:根据公式(2)、公式(3)和公式(4)获得相邻时刻的电压的变化量序列ΔUi,并将所述变化量序列ΔUi的第一项作为所述线性子规则对应的电压调节序列其中,R(t)为压电陶瓷执行器的跟踪目标值序列,为第i个线性子规则的预测输出序列,ΔUi为相邻时刻的电压的变化量序列,ρi为惩罚因子,在实时控制中,取该序列的第一项作为实际的控制输出,记作S104、获取压电陶瓷执行器在一个采样周期内的电压位移预测数据组;S105、以所述电压位移预测数据组对所述线性子规则的满足度为权重对所述子预测控制律执行加权平均、确定最终预测控制律、并将所述最终预测控制律作为控制输出函数,优选的,包括:根据公式(5)获得所述电压位移预测数据组对所述线性子规则Ri的满足度βi(X):根据公式(6)以所述电压位移预测数据组对所述线性子规则的满足度βi(X)为权重对所述子预测控制律执行加权平均、确定最终预测控制律:其中,K为规则的个数,为所述电压位移预测数据组中元素对相应模糊集Aip的隶属度函数值。具体的,设定预测控制器的初始控制量为0,在每一个采样周期,首先根据线性向量的状态求得每个子预测控制律并求得隶属度函数的满足度βi(X),而后由解模糊算法求取最终预测控制律,并作用于压电陶瓷执行器,而后重复上述过程。图2是本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法实施例一的原理图,如图2所示,该步骤采用平行分布式的形式对于所述压电陶瓷执行器进行位移控制,所述预测控制方法对于未知的系统扰动具有抑制作用,能够提高控制精度。本专利技术基于模糊TS模型的压电陶瓷执行器的预测控制方法实施例一,通过采用模糊建模方法对压电陶瓷执行器以离线方式进行建模,减轻了在线建模的计算负担,并且在模糊模型确定以后,控制器就可以根据该模型进行设计子控制预测律,仅有最终控制律的解模糊算法需要在每一个采样时间内进行,减小了预测控制方法的计算量,因此能够实现对压电陶瓷执行器的实时精确的控制。图3是本专利技术基于模糊TS模本文档来自技高网...
基于模糊TS模型的压电陶瓷执行器的预测控制方法和装置

【技术保护点】
一种基于模糊TS模型的压电陶瓷执行器的预测控制方法,其特征在于,包括:获取压电陶瓷执行器的电压位移建模数据组;根据模糊TS模型,对所述电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数;确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律;获取压电陶瓷执行器在一个采样周期内的电压位移预测数据组;以所述电压位移预测数据组对所述线性子规则的满足度为权重对所述子预测控制律执行加权平均、确定最终预测控制律、并将所述最终预测控制律作为控制输出函数。

【技术特征摘要】
1.一种基于模糊TS模型的压电陶瓷执行器的预测控制方法,其特征在于,包括:获取压电陶瓷执行器的电压位移采样数据组;根据模糊TS模型,对电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数;确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律;获取压电陶瓷执行器在一个采样周期内的电压位移预测数据组;以所述电压位移预测数据组对所述线性子规则的满足度为权重对所述子预测控制律执行加权平均、确定最终预测控制律、并将所述最终预测控制律作为控制输出函数;所述根据模糊TS模型对所述电压位移采样数据组执行模糊聚类,获得多个线性子规则,并根据最小二乘辨识法获得各所述线性子规则的参数包括:根据GK算法对所述电压位移采样数据组进行模糊聚类,求得IF-THEN表达式的模糊集Aip,获得线性子规则Ri:其中,x1,x2,...,xp代表线性向量X中的元素,Ai1,Ai2,...,Aip为线性向量X中的元素x1,x2,...,xp对应的模糊集,模糊集可在模糊聚类辨识中得到;fi(X)为第i个局部线性子模型,yi为其对应的模型输出;aij和bij为常数参数,ζi为偏差常数;ny为输出量y所对应的最大延迟,nu为输入量u所对应的最大延迟;并针对各所述线性子规则分别用最小二乘辨识法求得参数aij、bij和ζi;相应的,所述确定性能指标取最优条件下的各所述线性子规则对应的子预测控制律包括:根据公式(2)、公式(3)和公式(4)获得相邻时刻的电压的变化量序列ΔUi,并将所述变化量序列ΔUi的第一项作为所述线性子规则对应的电压调节序列其中,R(t)为压电陶瓷执行器的跟踪目标值序列,为第i个线性子规则的预测输出序列,ΔUi为相邻时刻的电压的变化量序列,ρi为惩罚因子。2.根据权利要求1所述的基于模糊TS模型的压电陶瓷执行器的预测控制方法,其特征在于,所述获取压电陶瓷执行器的电压位移采样数据组包括:获取所述压电陶瓷执行器的电压和位移,并以线性向量形式表示电压位移采样数据组:X=[y(t-1),y(t-2),…,y(t-ny),u(t),u(t-1),…,u(t-nu)]∈Rp(1)其中ny为输出量y所对应的最大延迟,nu为输入量u所对应的最大延迟。3.根据权利要求2所述的基于模糊TS模型的压电陶瓷执行器的预测控制方法,其特征在于,以电压位移预测数据组对所述线性子规则的满足度为权重对所述子预测控制律执行加权平均、确定最终预测控制律、并将所述最终预测控制律作为控制输出函数包括:根据公式(5)获得所述电压位移预测数据组对所述线性子规则Ri的满足度βi(X):根据公式(6)以所述电压位移预测数据组对所述线性子规则的满足度βi(X)为权重对所述子预测控制律执行加权平均、确定最终预测控制律:其中,其中K为规则的个数,为所述电压位移预测数据组中元素对相应模糊集Aip的隶属度函数值。4.根据权利要求2所述的基于模糊TS模型的压电陶瓷执行器的预测控制方法,其特征在于,所述获取所述压电陶瓷执行器的电压和位移包括:将压电陶瓷执行器的电压激励信号转换为变频率定幅值的正...

【专利技术属性】
技术研发人员:程龙侯增广谭民刘伟川
申请(专利权)人:中国科学院自动化研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1