基于涡流信号识别技术的全自动数据采集方法技术

技术编号:11688879 阅读:109 留言:0更新日期:2015-07-07 22:30
本发明专利技术属于核电站无损检测技术领域,具体是一种基于涡流信号识别技术的全自动数据采集方法。包括:步骤1,设定检测边界和数据记录边界,建立上述边界处的涡流数字信号的特征信号模型;步骤2,控制探头从管口进入被测管道,并以指定速率向内运动;步骤3,涡流仪器实时采集涡流数字信号,当获取的信号和检测边界的特征信号匹配时,停止前进;步骤4,开始数据自动采集;探头到达检测边界后,使得探头从被测管道向外退出,并且同时开始信号的自动采集,直到探头到达记录边界;步骤5,停止数据自动采集;当探头到达记录边界后,即停止数据采集,将探头退出被测管道。相比推拔器管端增加感应器的方法,基于信号识别的定位方法节约成本,可靠性高。

【技术实现步骤摘要】

本专利技术属于核电站无损检测

技术介绍
蒸汽发生器传热管是核电站一回路压力边界完整性的关键部件,同时它又是整个回路中最薄弱的环节,目前对传热管进行检测最有效的方式为涡流无损检测。整个涡流检测系统通常由多个子系统构成,可划分为信号系统、定位扫查系统以及辅助系统三大部分。其中信号系统主要包括涡流信号采集系统、涡流信号分析软件、涡流仪器、探头等相关组件组成。涡流检测过程中,信号采集是整个过程的先决条件,信号采集软件集成了定位器控制子系统、涡流仪器控制模块、推拔器控制软件等软件系统,通过控制这些子系统,协调定位器、推拔器有序运动,实现涡流信号的采集。采集完成后,由分析软件对信号进行判伤分析并生成检测报告,从而实现对蒸汽发生器传热管的检测。目前采集软件提供三种信号采集模式,分别为手动采集、半自动采集以及全自动采集。国外相关涡流检测公司均研发了相关技术实现这三种采集模式,其中全自动采集由于效率高、定位精度好、可减少人为失误等优点被作为主要采集模式广泛推广,从技术实现角度而言,难度也最大,其中采集区域的实时定位技术是自动采集方法的主要难点。一些国外公司采用在推拔器导管管端增加感应器以检测探头位置的技术方案实现管端定位,解决了全管自动采集的问题,但半管段、任意区间(例如胀管段)的自动采集依然是大部分检测公司的难点。并且在推拔器导管管端增加感应器,会使得系统部件增多,扩大系统体积,降低系统适用性,同时感应器由于本身属于电子器件,存在失效的风险。
技术实现思路
本专利技术目的是提供一种通过识别信号特征定位传热管检测区域的方法,用于蒸汽发生器涡流检测全自动采集,满足传热管全管区、半管区、弯管区以及自定义区域的自动定位、自动采集需求,在不增加系统体积的前提下,增强系统功能,提高适用性。本专利技术是如此实现的:—种,其中,包括如下步骤:步骤1,设定检测边界和数据记录边界,建立上述边界处的涡流数字信号的特征信号模型;步骤2,控制探头从管口进入被测管道,并以指定速率向内运动;步骤3,涡流仪器实时采集涡流数字信号,当获取的信号和检测边界的特征信号匹配时,停止前进;步骤4,开始数据自动采集;探头到达检测边界后,使得探头从被测管道向外退出,并且同时开始信号的自动采集,直到探头到达记录边界;步骤5,停止数据自动采集;当探头到达记录边界后,即停止数据采集,将探头退出被测管道。如上所述的一种,其中,完成步骤5后,当还存在需要探测的管道时,探头到达另一个需要探测的管道处,进行步骤2?步骤5。本专利技术的优点在于:I相比推拔器管端增加感应器的方法,基于信号识别的定位方法节约了成本,可靠性更高。2采用信号识别,实时性更强,一旦探头达到特征处,相关的数字信号就能实时被计算机转换和识别。3采用手动采集时,采集人员必须时刻监视涡流信号,判断探头位置,从而控制探头前进和后退,稍有疏忽就有可能损坏探头,所以采集人员一直处于高压力工作状态,采用自动采集方法,大大缓解了采集人员的压力。4目前依照此方法的自动采集系统已经应用于国内多个涡流检测现场,包括岭澳核电厂、福清核电厂、方家山核电厂等。【附图说明】图1是不同结构的涡流信号特征不同;图2是基于信号特征识别的自动采集时探头运动流程;图3是对于涡流信号处于管内还是管外做了标示;图4是计算信号数据点对应传热管位置示意图;图5是涡流全自动采集系统配置图;图6是采集范围和特征提取。【具体实施方式】下面结合附图和实施例对本专利技术进行进一步描述。本专利技术的原理是依据涡流检测原理进行,探头在传热管内运动时,在管壁会产生涡流,当探头运动时,管壁形状、缺陷、尺寸或电磁特性变化使所设置的线圈阻抗发生变化,涡流仪器通过采集这一变化形成涡流数字信号,在传热管管端、各支撑结构、防震条、弯管段等位置,由于形状结构不同形成的涡流信号均不相同,主要不同特征体现在信号幅值、相位、长条图变化趋势(单分量)、数据点数等,如图1所示,在各个位置利用涡流信号可以得到不同的图形。通过识别实时采集的信号特征就能确定探头当前所在位置,从而实现探头任意结构的定位。以下,是此思路的具体实现过程。此方法实施方式如下:?步骤1,设定检测边界和数据记录边界,建立上述边界处的涡流数字信号的特征信号模型;上述模型可以通过理论分析得到,也可以通过实际探测得到;上述信号模型将作为探头运动过程中的信号采集过程开始和停止的匹配条件;如图1所示,本实施例中,根据涡流信号绘制了便于识别和对比的图形,当然,在采用计算机自动判别的过程中,也可以不使用如此较为复杂的图形,而是仅仅通过信号幅值来判别也可以,本领域技术人员能够根据需要自行选定,例如,如图6所示即可。?步骤2,控制探头从管口进入被测管道,并以指定速率向内运动;此处,根据不同的检测对象和检测设备,需要设置不同的参数,本实施例中,设置包括自动采集计划、进行记录的时间延迟量、测量通道、推拔器运动速度、采样率等多个参数;?步骤3,涡流仪器实时采集涡流数字信号,当获取的信号和检测边界的特征信号匹配时,停止前进;?步骤4,开始数据自动采集;探头到达检测边界后,控制推拔器的运动,使得探头从被测管道向外退出,并且同时开始信号的自动采集,实现被测管道即传热管数据的自动采集,直到探头到达记录边界;步骤2?步骤4所述的探头运行轨迹主要如图2所示。现场检测时,推拔器将探头送入传热管,探头前进过程中,涡流信号采集软件实时获取涡流仪器采集的数字信号,通过信号特征分析,同各个结构信号的特征进行匹配,实时确定探头所在的结构位置,当探头到达预设的检测区域边界(边界处为管端、管板、分流板、任一支撑板或任一防震条),采集软件通知推拔器控制系统实现探头回拉,同时开始保存采集的数字信号;探头后退过程中,采集软件发现结束边界的特征信号时,停止记录数据,停止推拔器运动,完成一根传热管信号的自动采集,随后采集软件自动控制定位器移动探头到下一根采集管,继续采集,直到完成整个采集计划。探头运动过程中,采集软件通过分析数字信号特征确定探头所在位置,实时显示探头位置信息,显示方式包括图形显示(用二维或三维表示传热管、探头位置信息)、文字方式显示以及信号线标识(不同区域用不同颜色显示信号)等方法(见图3采用对于管内区域和管外区域做了标示)。依据推拔器运动速度和涡流信号采样率,确定数字信号数据点同实际传热管位置的对应关系,计算效果见图4,计算公式如下:传热管任一点对应的数据点的编号=此点位置* (采样率/探头速度)并且能够判定此处位置的结构特性,即得到数据点后,进一步得到如图1所示的各种图形化信号,与图1中所述各种图形进行对比,获取当前位置结构特征。.步骤5,停止数据自动采集;当探头到达记录边界后,即停止数据采集,将探头退出被测管道。?步骤6,当存在另一个需要探测的管道时,探头到达另一个需要探测的管道处,进行步骤2。如此反复,可以自动进行大批管道的数据采集过程。采集过程中,采集系统还可以实时监控各硬件设备的运行状态,在出现异常时进行报警,并自动采取相关保护措施,例如,当探头伸入管道,运行时间大于一定阈值而没有获取到检测边界特征信号时,进行报警,停止探头的伸入,防止由于误检测导致探头超出运行范围。自动采集过程中,采集系统实时监控各硬件设备的运行状态并显示这些信息。此外,针对采集本文档来自技高网...

【技术保护点】
一种基于涡流信号识别技术的全自动数据采集方法,其特征在于,包括如下步骤:步骤1,设定检测边界和数据记录边界,建立上述边界处的涡流数字信号的特征信号模型;步骤2,控制探头从管口进入被测管道,并以指定速率向内运动;步骤3,涡流仪器实时采集涡流数字信号,当获取的信号和检测边界的特征信号匹配时,停止前进;步骤4,开始数据自动采集;探头到达检测边界后,使得探头从被测管道向外退出,并且同时开始信号的自动采集,直到探头到达记录边界;步骤5,停止数据自动采集;当探头到达记录边界后,即停止数据采集,将探头退出被测管道。

【技术特征摘要】

【专利技术属性】
技术研发人员:冯美名韩捷聂炜超杜振坤廖述圣
申请(专利权)人:中核武汉核电运行技术股份有限公司核动力运行研究所
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1