基于内模控制策略的智能灰箱控制系统装置及控制方法制造方法及图纸

技术编号:11688811 阅读:202 留言:0更新日期:2015-07-07 22:24
基于内模控制策略的智能灰箱控制装置涉及工业过程控制领域,针对于复杂化学工业过程对象的控制系统,目的在于简化传统的复杂设计过程,满足企业的生产实际要求。本发明专利技术利用内部模型控制策略的思想,将辨识模块与控制模块集成一体,提出了一种基于内部模型控制策略的智能灰箱控制系统。本发明专利技术主要包括辨识模块和控制模块;控制模块又包括模型分类器模块和参数整定模块。模型分类器模块采用SVM技术实现有效匹配模型的智能分类;参数整定模块又包括两种方案:方案一是采用离线控制器库与参数整定相结合的方式;方案二是采用预设控制的结构形式与在线参数寻优整定的方式。本发明专利技术的优点是系统结构简单,设计过程简化,提高控制系统精度和生产效益。

【技术实现步骤摘要】
基于内模控制策略的智能灰箱控制系统装置及控制方法
本专利技术本专利技术涉及工业过程控制领域,尤其涉及对于复杂化学工业过程对象的控制系统设计。
技术介绍
在化工实际生产过程中,存在着大量的复杂过程对象。因此,复杂化工过程对象的控制问题对于生产实践有十分重要的意义。在单变量控制系统中,时常存在着大时滞、非线性、强干扰等因素;而在多变量系统中,时常存在着大耦合、强干扰、不稳定等因素。传统的控制方法是根据控制对象的输入输出数据,通过辨识方法,辨识出模型的参数,然后根据辨识出的模型参数来设计控制器。这种设计过程比较繁琐,而且在辨识和设计控制器过程中都会产生新的误差,导致控制系统的鲁棒性比较差。对于生产实践来说,传统的控制方法设计过程复杂,控制精度不高,生产效益低,不能满足企业的要求。
技术实现思路
有鉴于此,本专利技术设计了一种基于内部模型控制策略的智能灰箱控制系统装置。简化了对于复杂化工过程对象的控制系统设计方法,提高了控制系统的适用性和鲁棒性。一种基于内模控制策略的智能灰箱控制装置,其特征在于,包括:内模控制模块、匹配模型辨识模块、灰箱控制器模块;所述的内模控制模块包括三个部分,被控对象的内部模型模块、滤波器模块和控制模块。被控对象的内部模型模块用于估计操作变量对控制系统输出的影响,滤波器模块用于使控制系统具有鲁棒稳定性,控制模块用于计算操作变量的预测值,实现控制系统的跟踪特性;所述的匹配模型辨识模块包括用于根据对象的输入输出数据,估计出对象模型的参数,然后利用所辨识的模型作为内模控制的匹配模型;所述的灰箱控制器模块的结构包括模型分类模块和控制器参数整定模块,其中模型分类模块采用支持向量机技术,将辨识模块的匹配模型进行预处理正负模型样本,并提取特征值,对分类器进行训练,在找出每种分类的支持向量后,利用训练好的分类器进行模型的检测与识别;控制器参数整定模块包括控制策略选择模块和自动整定模块两个部分。进一步,所述的控制器参数整定模块采用离线控制器库与参数整定相结合的方式,即根据模型分类器的分类结果选择离线控制器库中的控制器结构形式,然后根据控制系统性能指标进行参数整定,实现跟踪控制。进一步,所述的控制器参数整定模块采用根据模型分类器的分类结果,预设控制的结构形式,然后根据控制系统性能的要求,设定好寻优指标,进行在线寻优整定。本专利技术所具备的其他特征及效果将在下面的说明中进一步详细阐述。本专利技术的目的和其他优点通过说明书,权利要求书,以及附图中指出的结构来实现和获得。下面通过附图结合具体实施方案对本专利技术作进一步说明。附图说明图1是智能灰箱控制系统示意图;图2是智能灰箱内模控制系统结构框图;图3是匹配模型辨识流程图;图4是智能灰箱内模控制器结构;图5是SVM模型分类器训练分类过程;图6是模型分类器工作流程图;图7是控制器参数整定器结构方案一;图8是控制器参数整定器结构方案二;图9是水套搅拌加热器示意图;图10是JSTH系统模型与辨识模型的频率对比;(黑圈为匹配模型,黑线为实际模型)图11是JSTH控制系统设定值跟踪响应;具体实施方式灰箱控制器模块包括模型分类模块和控制器参数整定模块,其中模型分类模块采用支持向量机(SVM)技术,将辨识模块的匹配模型进行预处理正负模型样本,并提取特征值,对分类器进行训练,在找出每种分类的支持向量后,利用训练好的分类器进行模型的检测与识别;控制器参数整定模块包括控制策略选择模块和自动整定模块两个部分。在此,采用两种结构设计方案实现控制参数整定模块的整定功能。一种方案是采用离线控制器库与参数整定相结合的方式,即根据模型分类器的分类结果选择离线控制器库中的控制器结构形式,然后根据控制系统性能指标进行参数整定,实现跟踪控制。另一个方案是采用根据模型分类器的分类结果,预设控制的结构形式,然后根据控制系统性能的要求,设定好寻优指标,进行在线寻优整定。下面结合附图和具体实施例对本专利技术进行详细说明。应当注意,说明书仅用于说明和解释本专利技术,并不用于限定本专利技术。本专利技术的名称是“基于内模控制策略的智能灰箱控制装置”,其中的“灰箱”是指被控对象的参数未知,内部动态变化未知,但是结构已知的情况;所谓的“智能”主要体现在根据模型分类器的分类结果,选择控制器的结构形式,实现了从辨识到控制的全过程无人驾驶及操作,加强了控制系统的集成度和自动化程度,提高了控制系统的适应能力,增强了控制系统的鲁棒性。图1是智能灰箱控制系统示意图,展示了本专利技术的基本设计过程和思想。1.系统结构实现本专利技术的系统有三大部分组成:内模控制模块、匹配模型辨识模块、灰箱控制器模块。如图2所示,为智能灰箱内模控制系统的结构框图。在图中,r表示系统的输入量;e表示误差;u为控制量;IGB-IMC是智能灰箱内模控制器,以GIGB-IMC表示;G为被控对象;Gm为所辨识系统所辨识出来的匹配模型;d为可观测干扰量;yp为系统的输出;ym为匹配模型的输出。首先,辨识模块根据被控对象输入输出的数据,估计模型参数,辨识出有效匹配模型Gm;然后模型分类器根据辨识出的有效匹配模型进行分类;分类完成后,参数整定模块根据分类结果和控制系统性能的要求,采用相应的控制器结构并整定控制器参数。由内模控制的基本理论,可以得知:系统的输入输出关系传递函数如式(1)和式(2)所示,公式(1)为从输入端到输出端的传递函数,公式(2)为从干扰端到输出端的关系式。由式(1)和式(2)可得系统的闭环响应如式(3)所示:2.稳定性分析当模型匹配(G=Gm)且没有外部扰动时,匹配模型的输出与被控对象的输入是相当的,则系统的稳定性由被控对象与控制器所决定;若被控对象时稳定,则系统的稳定至于控制器相关。这就是内模控制的最大特点和优势。对于阶跃输入和扰动,若模型不匹配,只要控制器的稳态增益等于模型稳态增益的倒数,则整个闭环系统仍是稳定的。公式(4)为模型不匹配情况下,系统稳定需要满足的条件:由终值定理可知,若假设稳定偏差e(∞)=0,则得其中GIGB-IMC(0)为控制器的稳态增益,为匹配模型的稳态增益。3.匹配模型辨识模块匹配模型辨识模块包括三个组成部分,被控对象输入输出数据、被控对象模型集和模型参数估计的准则。如图3所示,为辨识模块的流程图。根据被控对象的先验知识,设计辨识实验,进而产生所需要的被控对象的输入输出数据;并根据所给的被控对象的先验知识,选择合适的模型集及参数估计准则;然后,再进行模型的辨识,即辨识部分。得到估计模型Gm后,再进行验证;若没有通过验证,则返回初始部分,重新设计辨识实验,获取数据或重新选择合适被控对象的模型集及参数估计准则;若估计模型通过验证,则输出辨识模型。所辨识出的估计模型Gm,用于灰箱控制器模块的模型分类器进行分类,然后选择合适的控制器,最后进行控制器参数整定。4.灰箱控制器模块在灰箱控制器模块包含两个模块,模型分类模块和控制器参数整定模块。如图4所示,控制器模块根据系统的输入输出量、系统误差和由辨识所得的匹配模型进行监测、识别和分类,然后再选择相应的控制器形式并整定控制器的参数。模型分类模块采用可支持向量机(SVM)技术,对所辨识的模型Gm进行分类。本专利技术将被控对象划分为五类,如表1所示。表1匹配模型分类SVM训练分类过程采用两两比对的方法,其过程如图5所示。训练分类本文档来自技高网...
基于内模控制策略的智能灰箱控制系统装置及控制方法

【技术保护点】
一种基于内模控制策略的智能灰箱控制装置,其特征在于,包括:内模控制模块、匹配模型辨识模块、灰箱控制器模块;所述的内模控制模块包括三个部分,被控对象的内部模型模块、滤波器模块和控制模块。被控对象的内部模型模块用于估计操作变量对控制系统输出的影响,控制模块用于计算操作变量的预测值,实现控制系统的跟踪特性;所述的匹配模型辨识模块包括用于根据对象的输入输出数据,估计出对象模型的参数,然后利用所辨识的模型作为内模控制的匹配模型;所述的灰箱控制器模块的结构包括模型分类模块和控制器参数整定模块,其中模型分类模块采用支持向量机技术,将辨识模块的匹配模型进行预处理正负模型样本,并提取特征值,对分类器进行训练,在找出每种分类的支持向量后,利用训练好的分类器进行模型的检测与识别;控制器参数整定模块包括控制策略选择模块和自动整定模块两个部分。

【技术特征摘要】
1.一种基于内模控制策略的智能灰箱控制装置,其特征在于,包括:内模控制模块、匹配模型辨识模块、灰箱控制器模块;所述的内模控制模块包括三个部分,被控对象的内部模型模块、滤波器模块和控制模块;被控对象的内部模型模块用于估计操作变量对控制系统输出的影响,控制模块用于计算操作变量的预测值,实现控制系统的跟踪特性;所述的匹配模型辨识模块包括用于根据对象的输入输出数据,估计出对象模型的参数,然后利用所辨识的模型作为内模控制的匹配模型;所述的灰箱控制器模块的结构包括模型分类模块和控制器参数整定模块,其中模型分类模块采用支持向量机技术,将辨识模块的匹配模型的正负模型样本进行预处理,并提取特征值,对分类器...

【专利技术属性】
技术研发人员:靳其兵刘立业曹丽婷王琪
申请(专利权)人:北京化工大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1