【技术实现步骤摘要】
一种面向静态图像对象识别的特征点优选匹配方法
本专利技术涉及一种面向静态图像对象识别的特征点优选匹配方法,可用于计算机图像中目标对象的查找、识别与匹配,属于计算机图像处理和机器学习领域。
技术介绍
互联网中的信息越来越多地以图像形式存在。通过图像处理与分析技术提取图像中的有用信息成为计算机科学、人工智能领域的研究重点。图像处理与分析技术一般包括图像压缩,增强和复原,匹配、描述和识别。从图像中获取有用的度量、数据或信息称为图像分析,其基本步骤是:(1)把图像分割成互不重叠的子区域。每个子区域是由像素构成的连续集。(2)度量某些子区域的性质和关系,把度量值与分类模型比较,确定其类型。图像匹配、描述和识别是对图像进行比较和配准,通过分治提取图像的区域特征及相互关系,得到图像符号化的描述,再把它同模型比较,确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹。在计算机视觉识别系统中,图像内容通常用图像特征进行描述。事实上,基于计算机视觉的图像识别也可以分为类似文本搜索引擎的三个步骤:提取特征、建索引以及查询。图像识别是人工智能的一个重要领域。人们提出了不同的图像识别模型,如模板匹配模型。模板匹配模型需在已有经验的基础上建立待识别图像的记忆模式,又称模板。待识别图像如果能够与模板相同,则认为待识别图像与模板图像匹配。此外,选取可以反映图像的特点或匹配对象的特征是图像识别的关键。图像匹配中常用的特征有边缘、轮廓、直线、角点等,这些特征能够在一定程度上代 ...
【技术保护点】
一种面向静态图像对象识别的特征点优选匹配方法,其特征在于包括如下步骤:(1)设计特征点数据逻辑结构选取尺度不变特征转换(Scale‑Invariant Feature Transform,SIFT)算法特征点中每个特征点的位置参数和该特征点的描述子,设计特征点的数据逻辑结构,为步骤(2)及后续步骤提供图像特征点信息表示方法;(2)构造特征点对取基准图像按照步骤(1)构造的任一特征点与目标图像依据步骤(1)构造的任一特征点,构成单个特征点对,循环单个特征点对构造过程,形成特征点对集合;(3)优选特征点对根据步骤(2)得到的特征点对集合中每个特征点对的距离,构建距离矩阵H,按行选最小值,构造Hmin向量,对Hmin中的元素从小到大排序,利用基准图像特征点总个数的黄金分割数,得到DualMax(双向最佳)阈值D,按照既定规则将距离矩阵转换为匹配质量矩阵,选择匹配质量矩阵所在行列均为最大值的元素对应的特征点对,即为优选特征点对;(4)计算基准图像特征点关键度将优选特征点对集与Lowe匹配方法生成的特征点对集取交集,获得基准图像各特征点的关键度;(5)匹配目标图像对象综合评价匹配特征点对的数量和 ...
【技术特征摘要】
1.一种面向静态图像对象识别的特征点优选匹配方法,其特征在于包括如下步骤:(1)设计特征点数据逻辑结构选取尺度不变特征转换(Scale-InvariantFeatureTransform,SIFT)算法特征点中每个特征点的位置参数和该特征点的描述子,设计特征点的数据逻辑结构,为步骤(2)及后续步骤提供图像特征点信息表示方法;(2)构造特征点对取基准图像按照步骤(1)构造的任一特征点与目标图像依据步骤(1)构造的任一特征点,构成单个特征点对,循环单个特征点对构造过程,形成特征点对集合;(3)优选特征点对根据步骤(2)得到的特征点对集合中每个特征点对的距离,构建距离矩阵H,按行选最小值,构造Hmin向量,对Hmin中的元素从小到大排序,利用基准图像特征点总个数的黄金分割数,得到双向最佳DualMax阈值D,按照既定规则将距离矩阵转换为匹配质量矩阵,选择匹配质量矩阵所在行列均为最大值的元素对应的特征点对,即为优选特征点对;(4)计算基准图像特征点关键度将优选特征点对集与Lowe匹配方法生成的特征点对集取交集,获得基准图像各特征点的关键度;(5)匹配目标图像对象综合评价匹配特征点对的数量和关键度,对比匹配阈值,判定该目标图像是否包含待识别对象;所述步骤(3)中利用基准图像特征点总个数的黄金分割数,得到双向最佳DualMax阈值D具体如下:计算步骤(2)得到的特征点对集合中每个特征点对的距离,构建距离矩阵H,按行选最小值,构造Hmin向量,将Hmin的元素从小到大排序;对基准图像特征点总个数与黄金分割数1-61.8%乘积取四舍五入得到整数R;对第s个目标图像正样本,取排序序列第R个特征点对的距离值,标记为Ds;取P个目标图像正样本,重复以上过程得到P个Ds值,s=1,2…,P;取其平均值得到双向最佳DualMax阈值D。2.根据权利要求1所述的一种面向静态图像对象识别的特征点优选匹配方法,其特征在于:所述...
【专利技术属性】
技术研发人员:张常有,王晓亚,封筠,王婷,
申请(专利权)人:中国科学院软件研究所,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。