【技术实现步骤摘要】
压电驱动/锁紧式往复步进驱动平台及方法
本专利技术涉及精密驱动
,特别涉及一种压电驱动/锁紧式往复步进驱动平台及方法。本专利技术能够实现跨尺度双向精密步进运动与锁紧,具有三种工作模式,可用于高精密驱动、材料原位力学性能测试、精密光学和微小机器人等领域的微定位、微操作等。
技术介绍
近年来,纳米定位技术受到了研究人员的广泛关注,已取得了长足的发展,并广泛应用于精密光学、生物医学工程、材料原位力学性能测试、航空航天等重要工程领域。随着纳米操作技术需求的不断增大,具有纳米级运动精度和毫米级运动行程的跨尺度定位技术,成为了成为纳米定位
的研究热门。目前,跨尺度定位主要采用宏微混合式驱动、压电超声马达驱动、粘滑式驱动和压电尺蠖式驱动这四种方式。其中,宏微混合式驱动的回程误差和整体尺寸较大,不便于集成,且整体定位时控制较复杂;压电超声马达驱动驱动力较小,尺寸较大,结构不够紧凑;粘滑式驱动受压电驱动机理的制约工作中存在无法克服的后冲现象,严重影响了平台的运动精度和可靠性;压电尺蠖式驱动具有行程大,驱动方式稳定,驱动力大等优点,同时也存在机构复杂、尺寸较大、整体刚度差、加工困难、成本过高等缺点,严重限制了其在生产实际中的应用。因此,设计一种结构简单紧凑、便于加工、承载能力高的跨尺度超精密驱动平台显得尤为必要和迫切。
技术实现思路
本专利技术的目的在于提供一种压电驱动/锁紧式往复步进驱动平台及方法,在压电叠堆的时序控制下,具有三种工作模式,可实现双向精密步进运动,进行跨尺度定位和锁紧,解决现有技术中存在的机构复杂、尺寸较大、整体刚度差、加工困难、成本过高等问题。本专 ...
【技术保护点】
一种压电驱动/锁紧式往复步进驱动平台,其特征在于:包括精密驱动与锁紧单元Ⅰ、Ⅱ,往复步进单元和支撑座(10),所述精密驱动与锁紧单元Ⅰ、Ⅱ与支撑座(10)通过螺纹连接固定,所述往复步进单元安装在支撑座(10)上;通过锁紧压电叠堆Ⅰ、Ⅱ(5、13),将组合柔性铰链Ⅰ、Ⅱ(7、1)与运动平台(4)锁紧;并通过驱动压电叠堆Ⅰ、Ⅱ(8、2)和组合柔性铰链Ⅰ、Ⅱ(7、1),实现运动平台(4)的正、反向跨尺度精密步进运动。
【技术特征摘要】
1.一种压电驱动/锁紧式往复步进驱动平台,其特征在于:包括精密驱动与锁紧单元Ⅰ、Ⅱ,往复步进单元和支撑座(10),所述精密驱动与锁紧单元Ⅰ、Ⅱ与支撑座(10)通过螺纹连接固定,所述往复步进单元安装在支撑座(10)上;通过锁紧压电叠堆Ⅰ、Ⅱ(5、13),将组合柔性铰链Ⅰ、Ⅱ(7、1)与运动平台(4)锁紧;并通过驱动压电叠堆Ⅰ、Ⅱ(8、2)和组合柔性铰链Ⅰ、Ⅱ(7、1),实现运动平台(4)的正、反向跨尺度精密步进运动;所述的精密驱动与锁紧单元Ⅰ由组合柔性铰链Ⅰ(7)、锁紧压电叠堆Ⅰ(5)、驱动压电叠堆Ⅰ(8)、预紧螺钉Ⅰa、Ⅰb(9、6)组成,所述的精密驱动与锁紧单元Ⅱ由组合柔性铰链Ⅱ(1)、锁紧压电叠堆Ⅱ(13)、驱动压电叠堆Ⅱ(2)、预紧螺钉Ⅱa、Ⅱb(14、3)组成,通过预紧螺钉Ⅰa、Ⅰb、Ⅱa、Ⅱb(9、6、14、3)分别对驱动压电叠堆Ⅰ(8)、锁紧压电叠堆Ⅰ(5)、驱动压电叠堆Ⅱ(2)、锁紧压电叠堆Ⅱ(13)进行初始预紧;通过锁紧压电叠堆Ⅰ(5)或锁紧压电叠堆Ⅱ(13)驱动组合柔性铰链Ⅰ(7)或组合柔性铰链Ⅱ(1)伸长,并与运动平台(4)接触,实现运动平台(4)的锁紧;通过驱动压电叠堆Ⅰ(8)或驱动压电叠堆Ⅱ(2)的伸长与缩短,驱动组合柔性铰链Ⅰ(7)或组合柔性铰链Ⅱ(1),带动运动平台(4)作步进式精密运动;所述的往复步进单元安装于支撑座(10)上,呈对称的凸字形布置,由运动平台(4)、精密滚动导轨Ⅰ(11)、精密滚动导轨Ⅱ(12)组成,运动平台(4)通过精密滚动导轨Ⅰ、Ⅱ(11、12)安装在支撑座(10)上,通过精密滚动导轨Ⅰ、Ⅱ(11、12)做导向支撑。2.根据权利要求1所述的压电驱动/锁紧式往复步进驱动平台,其特征在于:所述的支撑座(10)为中心对称的凹型结构;其上的条形凸台为精密滚动导轨Ⅰ、Ⅱ(11、12)的安装提供定位基准。3.根据权利要求1所述的压电驱动/锁紧式往复步进驱动平台,其特征在于:所述的精密驱动与锁紧单元Ⅰ、Ⅱ采用中心对称布置,集锁紧与驱动于一体,运动平台(4)的运动行程由精密滚动导轨Ⅰ、Ⅱ(11、12)的长度决定。4.根据权利要求1所述的压电驱动/锁紧式往复步进驱动平台,其特征在于:所述的组合柔性铰链Ⅰ、Ⅱ(7、1)均为一体式柔性铰链,包含驱动铰链(a)和锁紧铰链(b);驱动铰链(a)用以步进驱动,为三排直角柔性铰链;锁紧铰链(b)为单排直角柔性铰链,用以实现与运动平台(4)的锁紧。5.根据权利要求1所述的压电驱动/锁紧式往复步进驱动平台,其特征在于:所述的锁紧压电叠堆Ⅰ、Ⅱ(5、13)、驱动压电叠堆Ⅰ、Ⅱ(8、2)通过对时序电压控制实现锁紧与步进驱动。6.一种压电驱动/锁紧式往复步进驱动方法,其特征在于:压电驱动与锁紧式跨尺度往复步进平台,按照不同的时序控制算法,获得三种不同的工作模式,实现双向精密步进运动,并实现平台运动到指定位置的锁紧;其中,工作模式一的正向、反向步进运动采用相同的时序控制方式,由两个精密驱动与锁紧单元分别实现;工作模式二的正向、反向步进运动采用不同的时序控制方式,任一精密驱动与锁紧单元均可独立实现正向、反向步进运动;工作模式三的正向、反向步进运动采用不同的时序控制方式,每个运动均由两个精密驱动与锁紧单元共同完成;时序信号为梯形,具体工作过程如下:初始状态:驱动压电叠堆Ⅰ、Ⅱ(8、2),锁紧压电叠堆Ⅰ、Ⅱ(5、13)均不带电,系统处于自由状态,此时运动平台(4)处于游动状态;工作模式一:正、反向步进采用相同的时序控制方式,由两个精密驱动与锁紧单元分别完成;正向运动,控制时序一:当t1时刻到来时,锁紧压电叠堆Ⅰ(5)通电,由于逆压电效应而伸长,驱动并将组合柔性铰链Ⅰ(7)与运动平台(4)锁紧;锁紧完毕后,t2时刻到来,驱动压电叠堆Ⅰ(8)通电伸长,驱动组合柔性铰链Ⅰ(7)伸长,由于铰链与运动平台(4)已达到锁紧状态,故铰链的伸长会带动运动平台(4)一起运动一个步距;之后,t3时刻到来,锁紧压电叠堆Ⅰ(5)电压逐渐减小并缩短,组合柔性铰链Ⅰ(7)与运动平台(4)脱离接触,将其释放;待完全释放后,在t4时刻,驱动压电叠堆Ⅰ(8)电压逐渐减小,组合柔性铰链Ⅰ(7)由于弹性而回弹,并回复到初始位置;至t5时刻,便完成了一个步进周期;如此连续时序通电,便可实现运动平台(4)的正向精密步进;反向运动,控制时序一:将上述正向运动中的锁紧压电叠堆Ⅰ(5)、驱动压...
【专利技术属性】
技术研发人员:赵宏伟,徐海龙,李莉佳,孙玉娇,杜宪成,付海双,任露泉,范尊强,
申请(专利权)人:吉林大学,
类型:发明
国别省市:吉林;22
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。