一种含风光水多源互补微网混合储能容量最佳配比方法技术

技术编号:11596728 阅读:98 留言:0更新日期:2015-06-12 07:08
一种含风光水多源互补微网混合储能容量最佳配比方法,该方法根据当地风、光、水等自然资源的分布情况,模拟风力发电、光伏发电、以及水力发电的年输出功率曲线,结合微网的年负荷曲线,以系统成本和功率波动为目标函数,以蓄电池容量和超级电容容量为优化变量,同时确定功率平衡约束、最大瞬时功率约束、供电可靠性约束、超级电容充放电电流及电压约束、蓄电池SOC约束等约束条件,建立含风、光、水的微网混合储能优化配置模型;采用含模糊决策的多目标规划GA-PSO算法对目标函数进行优化求解,得到混合储能容量的最佳配比。本发明专利技术与传统GA算法和PSO算法相比,收敛速度更快,且较好地回避了多目标优化算法中目标函数相互冲突的问题。

【技术实现步骤摘要】

本专利技术涉及一种含风光水多源互补微网混合储能容量最佳配比方法,属微网混合储能

技术介绍
与煤炭和石油等传统化石能源相比,风能、太阳能以及水能等能源具有污染少、储量大、可再生等特点,加大这些清洁能源的开发力度,实现其大规模的利用,对于缓解当今世界严重的环境污染和资源枯竭问题具有重要的意义,已成为当前电力行业的一个工作重点。然而,风能、太阳能和水能等可再生清洁能源均具有波动性的特点,其中风能和太阳能的短期波动较大,而水能的短期波动较小,季节性波动较大。这种波动的差异性,使得风力发电、光伏发电以及水力发电之间具有一定的互补性,但由风、光、水构成的多源互补微网输出功率仍不平稳,给大电网的安全稳定运行带来了新的挑战。配置储能装置是平抑含风光水多源互补微网输出功率波动的一种有效措施。蓄电池具有能量密度高、功率密度低,充放电速度慢的特点,而超级电容器具备功率密度高、充放电速度快的特点。构建含蓄电池和超级电容器的混合储能系统,充分发挥两种储能装置的各自优势,不仅可以降低储能系统的成本,而且可以实现含风光水多源互补微网与大电网的友好互动。
技术实现思路
本专利技术的目的是,针对可再生清洁能源风、光、水构成的多源互补微网输出功率波动的问题,提出一种含风光水多源互补微网混合储能容量最佳配比方法。本专利技术的技术方案是,根据当地风、光、水等自然资源的分布情况,模拟风力发电、光伏发电、以及水力发电的年输出功率曲线;结合微网的年负荷曲线,建立以系统成本和功率波动最小的优化目标函数,同时确定功率平衡约束、最大瞬时功率约束、供电可靠性约束、超级电容充放电电流及电压约束、蓄电池SOC约束等约束条件,采用含模糊决策的多目标规划GA-PSO算法对目标函数进行优化求解,得到最优的混合储能容量配比。所述方法的步骤如下:(1)获取当地风、光、水等自然资源的分布情况,模拟风力发电、光伏发电、以及水力发电的年输出功率曲线;(2)获取微网的年负荷曲线;(3)以系统成本和功率波动最小为目标函数,以蓄电池容量和超级电容容量为优化变量,同时确定功率平衡约束、最大瞬时功率约束、供电可靠性约束、超级电容充放电电流及电压约束、蓄电池SOC约束等约束条件,建立含风、光、水的互补微网混合储能优化配置模型;(4)采用含模糊决策的多目标规划GA-PSO算法对目标函数进行优化求解;(5)统计不同目标函数非负权重系数下各种蓄电池容量与超级电容容量配比,找到最佳配比。所述目标函数包括:(1)成本目标函数对混合储能系统的生命周期费用进行分析,建立了包含购置、运行、维护以及处理费用在内的成本目标函数:minF1=Cb+Co+Cm+Cd其中,Cb为购置费用;Co为运行费用;Cm为维护费用;Cd为处理费用;(2)功率波动目标函数取混合储能参与平滑功率波动的时间段为[T1,T2],建立功率波动目标函数:minF2=Σi=T1T2(PDG,i-PDG,i-1)2]]>PDG,i=Pdg,i+Pbat,i+Puc,iPdg,i=Ei(w)T2-T1+Ps,i+Σj=1n(Phj,i)]]>其中,i表示某一段时间;Pbat,i、Puc,i分别表示该段时间内蓄电池和超级电容的输出功率;Pdg,i、PDG,i分别表示经过混合储能装置平滑功率波动前后的系统实际发电功率;表示该段时间内风机的输出功率;表示水电集群在该段时间内的总输出功率,n为水电站个数;利用目标加权法,定义个体的适应度函数为各目标函数的加权和:minF=ω1F1+ω2F2,其中ω1,ω2是目标函数的非负权重系数,且满足ω1+ω2=1。所述含风、光、水的互补微网混合储能优化配置模型包括:(1)风力发电单元假定当前风速为vi、风机启动风速为vm、额定风速为vH、停机风速为vT、额定功率为PN,则风机在不同风速时对应的发电量分别为:Ew1=Σ[PN·(vi/vH)3·hi](vm≤vi<vH)Ew2=Σ(PN·hi)(vH≤vi<vT)]]>根据上式可以得到风机任一时间段内的发电总量:Ew=Ew1+Ew2。其中,hi为保持当前风速vi的小时数,单位为h;(2)光伏发电单元假设光伏阵列的额定功率为PN,转换效率为η,则光伏阵列的发电量为:Es=Ps·Tm=N·PN·η·Tm其中,Ps为光伏阵列的实际输出功率,单位为kW;N为当月天数,单位为d;Tm为光伏阵列倾斜面上当月平均峰值日照时数,单位为h/d;(3)水力发电单元假设水电站的水轮机引水发电流量为Q,单位为m3/s;水电站的工作水头为H,m;水电站的水能转换效率为η,可表示为η=η1η2η3,其中,η1表示水轮机效率,η2表示发电机效率,η3表示机组传动效率,则水电机组的发电量为:Eh=Ph·T=A·Q·H·T其中,Ph为水电站的实际输出功率,单位为kW;A的值可根据水电站的规模进行判定,一般A=6.0~8.5;T为其机组发电小时数,单位为h;(4)蓄电池单元忽略蓄电池的极化内阻与相间微分电容,只考虑其端电压ub和荷电状态SOC,可将蓄电池等效为由直流电压源E与内阻Rb串联构成的电路;蓄电池输出电压ub与荷电状态SOC可表示为:ub=E-Rb·ibSOC=SOC0+EbatQ]]>其中,E为蓄电池空载电压,V;Rb为其内阻,单位为Ω;ib为其工作电流,单位为A;Q为其容量,单位为Ah;SOC0为其初始荷电状态;为蓄电池的储能容量;(5)超级电容单元超级电容器可以等效为理想电容器C与电阻RS相串联的模型;其中,UC(t)为超级电容器的电压;IS1、IS2分别为超级电容器的充、放电电流。设U0为电容器初始电压,U1(t)和U2(t)分别是电容器充电和放电时的电压值,则电容器在充电和放电时,其计算公式分别为:U1(t)=UC(t)+RS·IS1=U0+1CIS1(t)+RS·IS1]]>U2(t)=UC(t)-RS·IS2=U0+1CIS2(t)+RS·IS2]]>超级电容器充、放电时间分别表示为:C·dv=IS1·tC·dv-IS2·C·RS=IS2·t其中,dv为超级电容器的端电压变化;t为超级电容的充放电时间,单位为h;设Uw、Uv分别为电容充电完成与放电完成时的本文档来自技高网...
一种含风光水多源互补微网混合储能容量最佳配比方法

【技术保护点】
一种含风光水多源互补微网混合储能容量最佳配比方法,其特征在于,所述方法根据当地风、光、水自然资源的分布情况,模拟风力发电、光伏发电、以及水力发电的年输出功率曲线;结合微网的年负荷曲线,建立以系统成本和功率波动最小的优化目标函数,同时确定功率平衡约束条件、最大瞬时功率约束条件、供电可靠性约束条件、超级电容充放电电流及电压约束条件和蓄电池SOC约束条件,采用含模糊决策的多目标规划GA‑PSO算法对目标函数进行优化求解,得到最优的混合储能容量配比。

【技术特征摘要】
1.一种含风光水多源互补微网混合储能容量最佳配比方法,其特征在于,
所述方法根据当地风、光、水自然资源的分布情况,模拟风力发电、光伏发电、
以及水力发电的年输出功率曲线;结合微网的年负荷曲线,建立以系统成本和
功率波动最小的优化目标函数,同时确定功率平衡约束条件、最大瞬时功率约
束条件、供电可靠性约束条件、超级电容充放电电流及电压约束条件和蓄电池
SOC约束条件,采用含模糊决策的多目标规划GA-PSO算法对目标函数进行优化
求解,得到最优的混合储能容量配比。
2.根据权利要求1所述的一种含风光水多源互补微网混合储能容量最佳配
比方法,其特征在于,所述方法的步骤如下:
(1)获取当地风、光、水自然资源的分布情况,模拟风力发电、光伏发电、
以及水力发电的年输出功率曲线;
(2)获取微网的年负荷曲线;
(3)以系统成本和功率波动最小为目标函数,以蓄电池容量和超级电容容
量为优化变量,同时确定包括功率平衡约束、最大瞬时功率约束、供电可靠性
约束、超级电容充放电电流及电压约束、蓄电池SOC约束在内的约束条件;建
立含风、光、水的微网混合储能优化配置模型;
(4)采用含模糊决策的多目标规划GA-PSO算法对目标函数进行优化求解;
(5)统计不同目标函数非负权重系数下各种蓄电池容量与超级电容容量配
比,找到最佳配比。
3.根据权利要求2所述的一种含风光水多源互补微网混合储能容量最佳配
比方法,其特征在于,所述对目标函数进行优化求解过程为:
Step1初始化:确定种群规模pop_size,交叉概率pc,变异概率pm,最大

\t进化代数maxgen,产生初始种群pop;
Step2更新:求出pop中所有个体的适应度值,得出个体最优粒子gbest和
全局最优粒子zbest,并按粒子群算法进行速度、位置更新,得到新的种群pop1;
Step3交叉:按照交叉概率pc,执行交叉算子;
Step4变异:按照变异概率pm,执行交叉算子,得到新的种群pop2;
Step5选择:从种群pop1与pop2中用精英选择算子选出pop_size个个体
组成下一代种群pop,同时更新全局最优粒子zbest;
Step6判断:若满足迭代次数或满足最优个体所对应的网络输出误差精度要
求,则停止;否则,转step2;
Step7模糊决策:改变目标函数的非负权重系数,多次重复计算,用以进行
模糊决策。
4.根据权利要求2所述的一种含风光水多源互补微网混合储能容量最佳配
比方法,其特征在于,所述目标函数包括:
(1)成本目标函数
对混合储能系统的生命周期费用进行分析,建立了包含购置、运行、维护
以及处理费用在内的成本目标函数:
minF1=Cb+Co+Cm+Cd其中,Cb为购置费用;Co为运行费用;Cm为维护费用;Cd为处理费用;
(2)功率波动目标函数
取混合储能参与平滑功率波动的时间段为[T1,T2],建立功率波动目标函数:
minF2=Σi=T1T2(PDG,i-PDG,i-1)2]]>PDG,i=Pdg,i+Pbat,i+Puc,iPdg,i=Ei(w)T2-T1+Ps,i+Σj=1n(Phj,i)]]>其中,i表示某一段时间;Pbat,i、Puc,i分别表示该段时间内蓄电池和超级电
容的输出功率;Pdg,i、PDG,i分别表示经过混合储能装置平滑功率波动前后的系统
实际发电功率;表示该段时间内风机的输出功率;表示水电集群
在该段时间内的总输出功率,n为水电站个数;
利用目标加权法,定义个体的适应度函数为各目标函数的加权和:
minF=ω1F1+ω2F2,其中ω1,ω2是目标函数的非负权重系数,且满足ω1+ω2=1。
5.根据权利要求2所述的一种含风光水多源互补微网混合储能容量最佳配
比方法,其特征在于,所述含风、光、水的微网混合储能优化配置模型为:
(1)风力发电单元
假定当前风速为vi、风机启动风速为vm、额定风速为vH、停机风速为vT、
额定功率为PN,则风机在不同风速时对应的发电量分别为:
Ew1=Σ[PN·(vi/vH)3·hi](vm≤vi<vH)Ew2=Σ(PN·hi)(vH≤vi<vT)]]>根据上式可以得到风机任一时间段内的发电总量:Ew=Ew1+Ew2;
其中,hi为保持当前风速vi的小时数,单位为h;
(2)光伏发电单元
假设...

【专利技术属性】
技术研发人员:夏永洪吴虹剑程林辛建波胡蕾范瑞祥纪清照曹蓓
申请(专利权)人:国家电网公司国网江西省电力科学研究院南昌大学清华大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1