本发明专利技术公开了基于视觉理解的图像分割阈值确定方法,具体包括以下几个步骤:(1)将彩色图像变换为灰度图像;(2)对灰度图像进行数字滤波;(3)计算直方图;(4)计算直方图的全局重心,作为图像分割的第一个分割阈值TL;(5)将高于第一个分割阈值TL的直方图区域分成两部分,根据视觉平衡原则,利用搜索算法寻找两部分的视觉重心,作为图像分割的第二个分割阈值TH。本发明专利技术根据艺术创作中的视觉平衡原则,利用画面的视觉重心作为分割阈值,可以有效地将图像的背景部分和主题部分分离出来,使得分割后的图像,能够以极小的图像像素,最大限度地将图像特征保留下来,并且符合人们的认知期望。
【技术实现步骤摘要】
基于视觉理解的图像分割阈值确定方法
本专利技术涉及基于视觉理解的图像分割阈值确定方法,属于图像处理、最优化
技术介绍
图像分割是图像特征识别技术中的一个重要环节,它通过较少的图像像素,保留图像的重要特征信息。图像分割的好坏,直接关系到图像特征的识别效果与处理速度。影响图像分割性能是分割阈值的选择。现有的图像分割技术常采用单阈值或双阈值进行图像分割,存在两个方面的局限性:1)传统的阈值选择标准往往只满足统计意义下的数学最优,但缺乏符合视觉认知的物理解释,从而导致图像分割后的视觉效果差强人意,即:分割后的图像,要么产生大量的信息冗余,要么出现特征信息缺失,使得图像分割效果难以符合人的主观愿望。2)现有算法所确定的阈值,要么只适用于单阈值图像分割,要么只适合于双阈值图像分割,即:单阈值图像分割和双阈值图像分割所需要的最优阈值难以用一种方法同时计算得到。我们知道,当人欣赏一幅画面时,需要经历两个过程。首先是眼球的受光过程:眼球会根据反射光线的强弱自适应调节进入到视网膜上的光线强度,从而抑制部分可见光。随后是对可见光的理解过程:对于投射到视网膜上的可见光,即人眼所见的画面内容,会不知不觉地寻找图案布局、色彩明暗的视觉平衡点,从而抽取画面的主要特征。艺术创作也是遵循这一自然现象:将图案所要表达的主题部分和背景部分,通过不同层次分层表达。
技术实现思路
针对现有技术存在的不足,本专利技术目的是提供一种基于视觉理解的图像分割阈值确定方法:首先利用生物学的光线抑制原理,通过计算第一个分割阈值TL,抑制掉画面中部分光线较暗的部分;随后,根据艺术创作中的视觉平衡原则,通过计算画面的视觉重心,即第二个分割阈值TH,将图像的背景部分和主题部分分离出来,使得分割后的图像,能够以极小的图像像素,最大限度地将图像特征保留下来,并且符合人们的认知期望。为了实现上述目的,本专利技术是通过如下的技术方案来实现:在图像分割时,我们需要找到两个阈值:一个阈值TL用于抑制亮度较低的可见光,一个阈值TH通过寻找画面的视觉重心,将画面背景和画面主题分离开。图像特征识别时,当需要同时保留画面背景和主题,可采用TL和TH进行双阈值图像分割;当只需要保留画面主题时,则采用TH进行单阈值图像分割。本专利技术的基于视觉理解的图像分割阈值确定方法,具体包括以下几个步骤:(1)将需要识别的彩色图像变换为灰度图像;(2)对步骤(1)中的灰度图像进行数字滤波;(3)计算步骤(2)中滤波后所得灰度图像的直方图;(4)计算步骤(3)中直方图的全局重心,作为图像分割的第一个分割阈值TL;(5)将高于第一个分割阈值TL的直方图区域分成两部分,根据视觉平衡原则,利用搜索算法寻找两部分的视觉重心,作为图像分割的第二个分割阈值TH。步骤(4)中,第一个分割阈值TL的计算方法如下:设灰度图像有N个灰度等级,nj是第j个灰度等级的像素个数,其中,N≤256,j=1,2,…N,则第一个分割阈值TL采用如下公式直接计算:步骤(5)中,所述第二个分割阈值TH采用如下方法进行迭代搜索:设所述第一个分割阈值TL所对应的灰度等级为L,所述第二个分割阈值TH所对应的灰度等级为H,(a)先令m=0,计算TH的初值TH(0):(b)然后令m=m+1,分别计算灰度等级在区间[L,H]和[H,N]内的直方图重心TLK和THK:(c)设TLK和THK对应的灰度等级分别为LK和HK,此时还需计算区间[LK,HK]的直方图重心TH(m):(d)当|TH(m)-TH(m-1)|≤ε时,TH(m)就是所需要的第二个分割阈值TH;若不满足,则返回步骤(b)重新进行迭代计算,直到满足误差精度为止,其中,m表示的是第m次迭代搜索,ε为设定的误差精度。上述计算所得分割阈值,既可将TH用于单阈值图像分割,也可同时利用TL和TH进行双阈值图像分割。本专利技术首先模仿眼球对光线的自动抑制行为,通过第一级分割阈值TL,将图像中灰度值较小(即光线较暗)的像素屏蔽;然后根据艺术创作中的视觉平衡要求,通过寻找图像的视觉重心,即第二级分割阈值TH,将图像的背景部分与主题部分分割开,从而能够以很少的像素来表达图像画面所要表达的主题。所保留的画面特征不但符合人们的认知期望,而且计算机在进行特征提取时,计算量更小、速度更快。本专利技术可同时为图像分割提供所需要的单阈值(TH)或双阈值(TL和TH)。附图说明图1为本专利技术的基于视觉理解的图像分割阈值确定方法工作流程图;图2为本专利技术在实施过程中分割阈值在直方图中的位置分布。具体实施方式为使本专利技术实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本专利技术。参见图1和图2,本专利技术的基于视觉理解的图像分割阈值确定方法工作流程如下:(1)将要识别的彩色图像变换为灰度图像(如果原始图像为灰度图像,则无需变换);(2)对步骤(1)中所得灰度图像进行数字滤波;(3)计算滤波后灰度图像的直方图;(4)计算直方图全局重心,作为图像分割的第一个分割阈值TL;(5)将高于第一个分割阈值TL的直方图区域分成两部分,根据视觉平衡原则,利用搜索算法寻找两部分的重心,当两部分重心的重心成为两部分的分界阈值时,则为图像分割的第二个分割阈值TH。本实施例中,步骤(1)~(3)可通过已公开资料获得相应计算公式,并分别求出各自所需要的数据。步骤(4)中,第一个分割阈值TL通过计算直方图的全局重心得到。具体方法如下:设灰度图像的灰度等级为N(N≤256),nj为第j(j=1,2,…N)个灰度等级的像素数量。则第一个分割阈值TL可由如下公式计算:步骤(5)中,为了满足视觉平衡需要,需要通过迭代优化算法确定视觉重心TH。具体方法如下:设第一个分割阈值TL所对应的灰度等级为L,第二个分割阈值TH所对应的灰度等级为H。(a)先令m=0,计算TH的初值TH(0):(b)然后令m=m+1,分别计算灰度等级在区间[L,H]和[H,N]内的直方图重心TLK和THK:(c)设TLK和THK对应的灰度等级分别为LK和HK。此时还需计算区间[LK,HK]的直方图重心TH(m):(m表示的是第m次迭代搜索)(d)当|TH(m)-TH(m-1)|≤ε时(ε为设定的误差精度),TH(m)就是所需要的第二个分割阈值TH;若不满足,则返回步骤(b)重新进行迭代计算,直到满足误差精度为止。本专利技术的数字图像分割阈值计算方法,是根据眼球的光线自动抑制原理,计算灰度图像的第一个分割阈值TL(低阈值);随后,借鉴艺术创作中的视觉平衡原则,通过寻找图像画面的视觉重心,确定第二个分割阈值TH(高阈值)。利用本专利技术的所得阈值进行图像分割,具有很高的信噪比,能够以很少的图像信息表达图像的主要特征,有利于提高图像识别精度和快速性。本专利技术所得到的阈值,既可以用于单阈值图像分割(TH),又可用于双阈值图像分割(TL和TH)。以上显示和描述了本专利技术的基本原理和主要特征和本专利技术的优点。本行业的技术人员应该了解,本专利技术不受上述实施例的限制,上述实施例和说明书中描述的只是说明本专利技术的原理,在不脱离本专利技术精神和范围的前提下,本专利技术还会有各种变化和改进,这些变化和改进都落入要求保护的本专利技术范围内。本专利技术要求保护范围由所附的权利要求书及其等效物界定。本文档来自技高网...
【技术保护点】
基于视觉理解的图像分割阈值确定方法,其特征在于,具体包括以下几个步骤:(1)将需要识别的彩色图像变换为灰度图像;(2)对步骤(1)中的灰度图像进行数字滤波;(3)计算步骤(2)中滤波后所得灰度图像的直方图;(4)计算步骤(3)中直方图的全局重心,作为图像分割的第一个分割阈值TL;(5)将高于第一个分割阈值TL的直方图区域分成两部分,根据视觉平衡原则,利用搜索算法寻找两部分的视觉重心,作为图像分割的第二个分割阈值TH。
【技术特征摘要】
1.基于视觉理解的图像分割阈值确定方法,其特征在于,具体包括以下几个步骤:(1)将需要识别的彩色图像变换为灰度图像;(2)对步骤(1)中的灰度图像进行数字滤波;(3)计算步骤(2)中滤波后所得灰度图像的直方图;(4)计算步骤(3)中直方图的全局重心,作为图像分割的第一个分割阈值TL;(5)将高于第一个分割阈值TL的直方图区域分成两部分,根据视觉平衡原则,利用搜索算法寻找两部分的视觉重心,作为图像分割的第二个分割阈值TH;步骤(4)中,所述第一个分割阈值TL的计算方法如下:设灰度图像有N个灰度等级,nj是第j个灰度等级的像素个数,其中,N≤256,j=1,2,…N,则第一个分割阈值TL采用如下公式直接计算:步骤(5)中,所述第二个分割阈值TH采用如下方法进行迭代搜索:设所述第一个分割阈值TL所对应的灰度等级为L,所述第二个分割阈值TH所对应的灰度等级为H,(a)先令m=0,计算TH的初值TH(0):
【专利技术属性】
技术研发人员:杨启文,薛云灿,吉玲,金纪东,
申请(专利权)人:河海大学常州校区,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。