当前位置: 首页 > 专利查询>清华大学专利>正文

纳米铁锰复合氧化物负载的气体扩散电极及其制备与应用制造技术

技术编号:11514265 阅读:157 留言:0更新日期:2015-05-27 22:15
一种纳米铁锰复合氧化物负载的气体扩散电极,在电极的气体扩散层上增加催化层构成了催化气体扩散电极,所述催化层由聚四氟乙烯和负载纳米尺度的铁氧化物和锰氧化物的基底材料构成,本发明专利技术还提供了所述纳米铁锰复合氧化物负载的气体扩散电极的制备方法,该纳米铁锰复合氧化物负载的气体扩散电极可应用于劣质水处理中,本发明专利技术通过共沉淀法制备负载在活性炭粉末上的纳米尺度的铁锰复合氧化物,并最终制备出纳米铁锰复合氧化物负载的催化气体扩散电极,通过负载纳米铁锰复合氧化物提高了电极在催化反应中的催化效率,其可在中性介质条件下适用,拓宽了电极的适用范围,提高了催化气体扩散电极的催化效率。

【技术实现步骤摘要】
纳米铁锰复合氧化物负载的气体扩散电极及其制备与应用
本专利技术属于电化学与纳米技术在环境领域的应用,涉及一种异相催化电芬顿(Electro-Fenton)的劣质水处理技术,特别涉及一种纳米铁锰复合氧化物负载的气体扩散电极及其制备与应用。
技术介绍
芬顿技术由于适用范围广和反应速度快而在土壤和地下水修复中有着广泛的应用。电芬顿技术是一种改进后的芬顿技术,原理为利用电极表面的氧化还原反应,直接在电解体系中生成过氧化氢或者亚铁离子。过氧化氢在亚铁离子的催化作用下生成羟基自由基从而降解体系中的有机物。采用气体扩散电极作为电芬顿阴极能够大幅提高过氧化氢的生成效率并降低电解处理的能耗。另外现有的芬顿(Fenton)体系中一般采用Fe2+作为催化剂,不仅反应条件苛刻(pH3.5以下),需要加入大量作为催化剂的Fe2+和酸碱调节剂。还存在催化剂难以分离和回收的缺点。后续含铁污泥的处理也是有待解决的问题。气体扩散电极(Gasdiffusionelectrode,简称GDE),是由“气孔”、“液孔”和“固相”三种相态网络交织而成的较薄的一种特制的三相多孔膜电极,其中三种相态分别承担着气相传质、液相传质和电荷的传递。由于气体扩散电极的多孔结构特性有利于氧气在电极表面的吸附和传输,在通电状态下氧分子在电极表面得到2个电子还原为H2O2分子(公式(1))。均相芬顿反应一般利用Fe2+催化H2O2产生羟基自由基(·OH)(公式(2))。缺点是Fe2+在pH中性范围生成大量氢氧化亚铁并最终转为氢氧化钠铁沉淀,降低了催化剂的催化效率。O2+2H++2e-→H2O2(1)Fe2++H2O2→Fe3++OH-+·OH(2)气体扩散电极技术早在1983年由格罗夫发现,此后气体扩散电极在电池领域、环境监测及消毒和水处理领域都得到了广泛的应用。在水处理领域的应用一般采用气体扩散电极作为阴极,通过阴极上氧还原反应产生过氧化氢,构成电芬顿、类芬顿体系以处理废水。郁青红等(2006)制备了石墨/PTFE气体扩散电极并应用于过氧化氢的生成,结果表明在阴极电位为-0.55V,pH为3电解液Na2SO4浓度为0.1mol/L时,H2O2的生成量可达60mg/L。矫彩山(2007)等采用自制的活性炭/乙炔黑气体扩散电极,在电流密度为75mA/cm2,初始pH为3,曝气量为5L/min的条件下,对初始浓度为80mg/L的苯酚降解1h后,其去除率达到了75%。为了进一步提高气体扩散电极的性能,文献中已经报道一些较好的阴极材料,如碳/聚PTFE气体扩散电极、碳纳米管/PTFE气体扩散电极、活性炭/乙炔黑和石墨电极等。MahmoudZarei等(2011)分别以碳/PTFE气体扩散电极和碳纳米管/PTFE气体扩散电极为阴极电化学处理C.I.BasicYellow28(BY28)废水,结果表明在碳纳米管/PTFE气体扩散电极表面过氧化氢的生成量是碳/PTFE气体扩散电极的3倍,且在前10min对BY2的降解率分别为96%和62%。王中旭(2011)通过乙基蒽醌对石墨/聚四氟乙烯气体扩散电极进行修饰改性,提高了反应过程中过氧化氢的生成,而通过将过氧化氢与Fe2+结合形成芬顿体系,进一步加快了纤维素的裂解。汤培(2012)以石墨粉为主要材料,聚四氟乙烯(PTFE)为粘结剂和疏水剂,制备了石墨/聚四氟乙烯气体扩散电极。材料表征C/PTFE气体扩散电极具有较好的热稳定性和良好的微孔结构。研究发现溶液pH值和阴极电流密度对电化学生成H2O2的影响较显著。而电解质类型、反应温度和电解质浓度对H2O2的影响较小。当电解液初始pH值为3,电流密度为3mA/cm2时,H2O2的生成量为438.9mg/L。处理染料废水结果表明:当橙黄Ⅱ溶液浓度为100mg/L,溶液pH值为2时,其去除率为89.9%;加入Fe2+可以提高橙黄Ⅱ的去除率,当Fe2+添加量为0.1mM,反应110min后染料废水去除率为92.8%。因此寻找适用条件广泛且高效的电极材料和催化方式成为气体扩散电极的研究热点。寻找合适的制备方式和制备条件,制备出高效的催化气体扩散电极具有重要的现实意义。
技术实现思路
为了克服上述现有技术的缺点,本专利技术的目的在于提供一种纳米铁锰复合氧化物负载的气体扩散电极及制备方法,通过共沉淀法制备负载在活性炭粉末上的纳米尺度的铁锰复合氧化物,并最终制备出纳米铁锰复合氧化物负载的催化气体扩散电极,从而拓宽气体扩散电极的适用范围,提高催化气体扩散电极的催化效率。为了实现上述目的,本专利技术采用的技术方案是:一种纳米铁锰复合氧化物负载的气体扩散电极,在电极的气体扩散层上增加催化层构成了催化气体扩散电极,所述催化层由聚四氟乙烯和负载纳米尺度的铁氧化物和锰氧化物的基底材料构成。所述催化层和气体扩散层均采用活性炭粉末或炭黑等球状碳素材料作为基底材料,粒径范围70±10微米;所述集流体采用碳布、镍网或不锈钢网等导电性良好的网状结构的材料。所述气体扩散电极结构为单面式、双面式或环形筒式。本专利技术还提供了所述纳米铁锰复合氧化物负载的气体扩散电极的制备方法,包括如下步骤:步骤一:混合基底材料、固态FeSO4·7H2O和KMnO4,调节pH并超声搅拌,由此得到负载有纳米铁锰复合氧化物的基底材料;步骤二:混合负载有纳米铁锰复合氧化物的基底材料、无水乙醇和聚四氟乙烯乳液,以超声的方式进行混匀,时间为15~30min;加热搅拌挥去混合物中的乙醇,搅拌速度240~300rpm,加热温度60~100℃,将得到的混合物压成薄片得到催化层;步骤三:以炭黑粉末替代步骤二中的负载有纳米铁锰氧化物的基底材料,重复步骤二,得到气体扩散层;步骤四:在集流体上分别放上气体扩散层和催化层后再次压制,然后在马弗炉中以350~450℃进行烧制,温度上升速率为7~10℃/min,温度升到目标温度后保温1~3h,得到纳米铁锰复合氧化物负载的气体扩散电极。所述步骤一中,基底材料和FeSO4·7H2O的质量比为(1-3):1,KMnO4和FeSO4·7H2O颗粒的摩尔质量比为3:1,调节pH到6-7,超声搅拌的时间为10-30分钟;所述步骤二中,聚四氟乙烯乳液的加入量与负载有纳米铁锰复合氧化物的基底材料的质量比为(1-3):1;所述步骤二中,挥发掉乙醇后,得到聚四氟乙烯和负载有纳米铁锰复合氧化物的基底材料的混合稠状物;所述步骤三中,炭黑粉末替代步骤二中的负载有纳米铁锰氧化物的基底材料后,聚四氟乙烯乳液的加入量与炭黑粉末的质量比为(1-3):1。所述原料投加方式为:原料投加方式为先加入无水乙醇和活性炭粉末或炭黑粉末超声搅拌,最后加入聚四氟乙烯乳液(60%wt)超声搅拌。所述步骤四中,压制条件为:压力15-30Mpa,时间30-60s。所述步骤一中基底材料在使用前用强酸或强碱改性或者不改性。本专利技术还提供了所述纳米铁锰复合氧化物负载的气体扩散电极在劣质水处理中的应用,将该催化气体扩散电极与对电极组成电解池,极板间距为0.9-10cm,电流密度为10-40mA/cm2,以O2或空气对水体进行曝气,气体流量为100-400mL/min,反应体系的pH范围为3-10。所述对电极为惰性电极,例如石墨电极、活性炭电极或者铂电极等。与现有技术相比,本专利技术的有益效果是:(1本文档来自技高网
...
纳米铁锰复合氧化物负载的气体扩散电极及其制备与应用

【技术保护点】
一种纳米铁锰复合氧化物负载的气体扩散电极,其特征在于,在电极的气体扩散层上增加催化层构成了催化气体扩散电极,所述催化层由聚四氟乙烯和负载纳米尺度的铁氧化物和锰氧化物的基底材料构成。

【技术特征摘要】
1.一种纳米铁锰复合氧化物负载的气体扩散电极的制备方法,在电极的气体扩散层上增加催化层构成了催化气体扩散电极,所述催化层由聚四氟乙烯和负载纳米尺度的铁氧化物和锰氧化物的基底材料构成,其特征在于,所述制备方法包括如下步骤:步骤一:混合基底材料、固态FeSO4·7H2O和KMnO4,调节pH并超声搅拌,由此得到负载有纳米铁锰复合氧化物的基底材料;步骤二:混合负载有纳米铁锰复合氧化物的基底材料、无水乙醇和聚四氟乙烯乳液,以超声的方式进行混匀,时间为15~30min;加热搅拌挥去混合物中的乙醇,搅拌速度240~300rpm,加热温度60~100℃,将得到的混合物压成薄片得到催化层;步骤三:以炭黑粉末替代步骤二中的负载有纳米铁锰氧化物的基底材料,重复步骤二,得到气体扩散层;步骤四:在集流体上分别放上气体扩散层和催化层后再次压制,然后在马弗炉中以350~450℃进行烧制,温度上升速率为7~10℃/min,温度升到目标温度后保温1~3h,得到纳米铁锰复合氧化物负载的气体扩散电极。2.根据权利要求1所述制备方法,其特征在于,所述步骤一中,基底材料和FeSO4·7H2O的质量比为(1-3):1,KMnO4和FeSO4·7H2O颗粒的摩尔比为3:1,调节pH到6-7,超声搅拌的时间为1...

【专利技术属性】
技术研发人员:李广贺蒋晶张旭
申请(专利权)人:清华大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1