当前位置: 首页 > 专利查询>东南大学专利>正文

一种基于解耦和扰动观测的超临界机组预测控制方法技术

技术编号:11504348 阅读:133 留言:0更新日期:2015-05-27 04:39
本发明专利技术公开了一种基于解耦和扰动观测的超临界机组预测控制方法,该方法以超临界机火电机组为被控对象,以燃料量、给水量、汽机调门开度为输入,主蒸汽压力、中间点温度、机组负荷为输出,首先通过前馈补偿器使得被控对象近似解耦,然后分别通过在每个通道设置的扰动观测器对干扰进行观测,以实现对被控对象进行多变量预测控制,解决超临界机组协调控制系统因干扰影响所带来的控制效果差的问题,能够有效地抑制外部不可测量扰动的影响,同时抑制输入变量之间耦合引起的内部扰动,从而提高超临界机组协调控制系统的控制性能。

【技术实现步骤摘要】
一种基于解耦和扰动观测的超临界机组预测控制方法
本专利技术属于超临界火电机组热工自动控制领域,尤其涉及一种基于解耦和扰动观测的超临界机组预测控制方法。
技术介绍
在超临界火电机组的运行过程中,协调控制系统受到模型失配、变量耦合等引起的内部扰动,以及多种外部扰动的影响,这些扰动的存在明显降低了控制器的控制效果。很多先进控制算法在处理强扰动时,因其在控制器中没有针对性的抗扰设计,系统的动态特性仍存在不足,影响控制性能。由于协调控制系统中除了可测扰动外还存在大量不可在线测量的扰动,为了改进控制器的控制效果,必须尽量消除不可测扰动的不利影响。不可测扰动的影响无法通过前馈控制的方式进行消除,此时,扰动观测器DOB提供了一种可行的解决办法。然而,超临界机组协调控制系统具有多个输入和多个输出,将扰动观测器DOB应用到超临界机组协调控制系统时,存在以下几个问题:1、多变量系统输入与输出之间关系复杂,如果对每个通道都加入扰动观测器,则系统结构将变得相当复杂,不易于调试和维护;2、如果只针对主对角线通道设计扰动观测器,则系统存在强耦合的情况下,扰动观测器无法实现扰动的有效补偿。
技术实现思路
专利技术目的:为了解决现有技术中超临界机组协调控制系统因干扰所带来的控制效果差的问题,本专利技术提供了一种基于解耦和扰动观测的超临界机组预测控制方法,能够有效地抑制现场中各种不可测量的扰动的影响,进一步提高协调控制系统的控制性能,该方法只针对主对角线通道设计扰动观测器,降低了控制系统结构的复杂度,有效抑制了系统内因强耦合而带来的内部扰动。技术方案:本专利技术提供的基于解耦和扰动观测的超临界机组预测控制方法,该方法包括以下步骤:(1)利用多变量动态矩阵控制器采用滚动优化方法,对于输出,根据某个稳态工况下k时刻所检测到的实际输出值yi(k)计算k时刻的初始输出预测值和k+1时刻输出预测值并利用所述输出预测值与给定值wi(k)比较并计算得到最优控制序列ΔUj,M(k),再以所述最优控制序列ΔUj,M(k)的第一个元素Δuj(k)作为k时刻的控制增量计算k时刻输入的预输入值μj(k),其中,i=1,2,3,j=1,2,3;(2)利用扰动观测器对扰动进行在线观测,当扰动发生变化时将解扰预输入υj与超临界机组预测控制系统的集总扰动D1(s)作为输入参量通过扰动观测器DOBj观测出等效的干扰信号再利用所述等效的干扰信号作为补偿对解扰预输入υj进行实时更新;(3)通过前馈补偿器D(s)对所述解扰预输入υj进行解耦得到k时刻的实际输入uj并将所述实际输入uj作用于传递函数模型G(s)所表征的被控对象;(4)在k时刻的控制作用之后,检测k+1时刻的实际输出值yi(k+1)并与所述k+1时刻输出预测值计算输出误差ei(k+1),利用所述输出误差ei(k+1)对k+1时刻的初始输出预测值进行反馈校正,其中,i=1,2,3;(5)在之后周期内反复执行步骤(1)至(4)。其中:在步骤(3)中,所述传递函数模型G(s)通过以下步骤建立:1)在稳态工况下,将超临界机组协调控制系统切换到手动状态,针对三个输入分别做阶跃响应实验,获取每一个输出相对于每一个输入的阶跃响应曲线;2)利用最小二乘法对所述阶跃响应曲线进行辨识,得到每个输出与每个输入之间的传递函数;3)将所述传递函数作为矩阵元素得到传递函数模型G(s)。其中,步骤(3)中所述前馈补偿器D(s)的表达式为:式中,Mji(s)表示矩阵G(s)第j行第i列元素的代数余子式。其中,步骤(2)中获得所述等效的干扰信号包括如下步骤:将所述集总扰动D1(s)通过Q(s)GDii-1(s)环节得到扰动估计值将所述k-1时刻补偿后的预输入υj(k-1)通过低通滤波器Qi(s)得到实际扰动等效值利用所述扰动估计值减去所述实际扰动等效值得到所述等效的干扰信号其中,在步骤(1)中,获取所述k时刻输入的预输入值μj(k)和所述k+1时刻输出预测值包括以下步骤:1)设置所述多变量动态矩阵控制器的相关参数,包括采样时间Ts、预测时域P、控制时域M、模型时域N、误差校正矩阵H、输出误差权矩阵Q及控制权矩阵R;2)采用预测模型对被控对象在预测时域P内的输出进行预测,所述模型的表达式为:式中,P表示第i个输出在k时刻对未来k+j时刻的输出预测值,P表示第i个输出在k时刻对未来k+j时刻的初始输出预测值,aij为输出yi对输入uj的阶跃响应系数,其中,i=1,2,3,j=1,2,3;3)采用滚动优化方法求解得到k时刻的最优控制序列ΔUM(k);4)只执行采样时刻k第一个控制增量Δμ(k),计算所述k时刻的预输入μj(k)的表达式如下:μj(k)=Δμj(k)+μj(k-1),j=1,...,3;5)利用所述预测模型计算所述k+1时刻输出预测值其中,步骤(4)中,所述对k+1时刻的初始输出预测值进行反馈校正,包括以下步骤:(1)k+1时刻的实际输出向量y(k+1)与k+1时刻输出的预测向量的输出误差向量e(k+1)为:(2)利用所述误差向量e(k+1)补偿所述k+1时刻输出的预测向量得到经校正的预测向量为:式中,H为误差校正矩阵,表达式为:(3)将所述经校正的预测向量进行移位得到k+1时刻初始输出预测向量为:式中,有益效果:本专利技术与现有技术相比,具有以下显著优点:超临界机组一般被简化为三入三出的多变量系统,输入与输出之间关系复杂,如果对每个通道都加入扰动观测器,则系统结构将变得相当复杂,不易于调试和维护;本专利技术方法提供的基于解耦和扰动观测器的预测控制方法,无需对每个通道都加入扰动观测器,只针对主对角线通道设计扰动观测器,系统结构相对简单,易于调试。解耦后的广义对象虽不能实现完全解耦,考虑到扰动观测器并不要求多变量系统动态完全解耦,只要求非主对角线通道的增益较小,相对于主对角线通道可以忽略即可,这样主对角线上的扰动观测器便可将其他输入对本输出的影响视作不可测扰动;本专利技术方法在系统存在强耦合的情况下,由于前馈解耦的作用,可以有效地抑制输入变量之间耦合引起的内部扰动,还能有效地抑制控制系统的外部可测及不可测扰动、模型失配引起的内部扰动。附图说明图1是本专利技术的系统结构图;图2是本专利技术的扰动观测器结构图;图3是本专利技术的仿真效果对比图;图3(a)是输出变量主蒸汽压力响应曲线;图3(b)是控制变量汽机调门开度响应曲线;图3(c)是输出变量中间点温度响应曲线;图3(d)是控制变量给水量响应曲线;图3(e)是输出变量机组负荷响应曲线;图3(f)是控制变量燃料量响应曲线。具体实施方式下面结合附图和具体实施实例,进一步阐明本专利技术,应理解这些实施实例仅用于说明本专利技术而不用于限制本专利技术的范围,在阅读了本专利技术之后,本领域技术人员对本专利技术的各种等价形式的修改均落于本申请所附权利要求所限定的范围。本实施例中的基于解耦和扰动观测的超临界机组预测控制方法的被控对象为超临界机组,可简化为一个三入三出的多变量系统,输入分别为燃料量B、给水量D、汽机调门开度U,输出分别为主蒸汽压力P、中间点温度T、机组负荷N。如图1所示,在该超临界机组预测控制系统中,包括:多变量动态矩阵控制器MDMC、设置在各自输出通道上的扰动观测器、前馈补偿器D(s),多变量动态矩阵控制器MDMC用于根据当前检测时刻主蒸汽压本文档来自技高网...
一种基于解耦和扰动观测的超临界机组预测控制方法

【技术保护点】
一种基于解耦和扰动观测的超临界机组预测控制方法,其特征在于,该方法包括以下步骤:(1)利用多变量动态矩阵控制器采用滚动优化方法,对于输出,根据某个稳态工况下k时刻所检测到的实际输出值yi(k)计算k时刻的初始输出预测值和k+1时刻输出预测值并利用所述输出预测值与给定值wi(k)比较并计算得到最优控制序列ΔUj,M(k),再以所述最优控制序列ΔUj,M(k)的第一个元素Δuj(k)作为k时刻的控制增量计算k时刻输入的预输入值μj(k),其中,i=1,2,3,j=1,2,3;(2)利用扰动观测器对扰动进行在线观测,当扰动发生变化时将解扰预输入υj与超临界机组预测控制系统的集总扰动D1(s)作为输入参量通过扰动观测器DOBj观测出等效的干扰信号再利用所述等效的干扰信号作为补偿对解扰预输入υj进行实时更新;(3)通过前馈补偿器D(s)对所述解扰预输入υj进行解耦得到k时刻的实际输入uj并将所述实际输入uj作用于传递函数模型G(s)所表征的被控对象;(4)在k时刻的控制作用之后,检测k+1时刻的实际输出值yi(k+1)并与所述k+1时刻输出预测值计算输出误差ei(k+1),利用所述输出误差ei(k+1)对k+1时刻的初始输出预测值进行反馈校正,其中,i=1,2,3;(5)在之后周期内反复执行步骤(1)至(4)。...

【技术特征摘要】
1.一种基于解耦和扰动观测的超临界机组预测控制方法,其特征在于,该方法包括以下步骤:(1)利用多变量动态矩阵控制器采用滚动优化方法,对于输出,根据某个稳态工况下k时刻所检测到的实际输出值yi(k)计算k时刻的初始输出预测值和k+1时刻输出预测值并利用所述输出预测值与给定值wi(k)比较并计算得到最优控制序列ΔUj,M(k),再以所述最优控制序列ΔUj,M(k)的第一个元素Δuj(k)作为k时刻的控制增量计算k时刻输入的预输入值μj(k),其中,i=1,2,3,j=1,2,3;(2)利用扰动观测器对扰动进行在线观测,当扰动发生变化时将解扰预输入υj与超临界机组预测控制系统的集总扰动D1(s)作为输入参量通过扰动观测器DOBj观测出等效的干扰信号再利用所述等效的干扰信号作为补偿对解扰预输入υj进行实时更新;(3)通过前馈补偿器D(s)对所述解扰预输入υj进行解耦得到k时刻的实际输入uj并将所述实际输入uj作用于传递函数模型G(s)所表征的被控对象;所述传递函数模型G(s)通过以下步骤建立:(31)在稳态工况下,将超临界机组协调控制系统切换到手动状态,针对三个输入分别做阶跃响应实验,获取每一个输出相对于每一个输入的阶跃响应曲线;(32)利用最小二乘法对所述阶跃响应曲线进行辨识,得到每个输出与每个输入之间的传递函数;(33)将所述传递函数作为矩阵元素得到传递函数模型G(s);(4)在k时刻的控制作用之后,检测k+1时刻的实际输出值yi(k+1)并与所述k+1时刻输出预测值计算输出误差ei(k+1),利用所述输出误差ei(k+1)对k+1时刻的初始输出预测值进行反馈校正,其中,i=1,2,3;(5)在之后周期内反复执行步骤(1)至(4)。所述前馈补偿器D(s)的表达式为:式中,i=1,2,3,j=1,2,3,Mji(s)表示矩阵G(s)第j行第i列元素的代数余子式;所述等效的干扰信号通过以下步骤得到:(1)将所述集总扰动D1(s)通过Q(s)GDii-1(s)环节得到扰动估计值(2)将所述k-1时刻补偿后的预输入υj(k-1)通过低通滤波器Qi(s)得到实际扰动等效值(3)利用所述扰动估计值减去所述实际扰动等效值得到所述等效的干扰信号2.根据权利要求1所述的基于解耦和扰动观测的超临界机组预测控制方法,其特征在于,在步骤(1)中,获取所述k时刻输入的预输入值μj(k)和所述k+1时刻输出预测值包括以下步骤:(1)设置所述多变量动态矩阵控制器的相关参数,包括采样时间Ts、预测时域P、控制时域M、模型时域N、误差校正矩阵H、输出误差权矩阵Q及控制权矩阵R;(2)采用预测模型对被控对象在预测时...

【专利技术属性】
技术研发人员:沈炯笪凌云刘西陲吴啸潘蕾李益国
申请(专利权)人:东南大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1