基于视觉测量的机械臂运动路径补偿方法技术

技术编号:11251182 阅读:76 留言:0更新日期:2015-04-02 00:34
本发明专利技术公开了一种利用视觉测量对机械臂运动路径补偿的方法,用于视觉引导机械臂的运动。该方法通过视觉测量识别机械臂、航天器、待装位置三者位置与理论模型中理论位置存在差异,补偿机械臂路径规划偏差,达到安全进出狭小空间的控制效果,满足航天器高精度高可靠性的装配需求。采用这种方法,可以对航天器实际位置与理想模型理论位置间存在误差进行识别,对机械臂运动路径进行补偿,使位置及路径控制更为精确,达到安全进出狭小空间的控制效果。本发明专利技术的测量方法适用范围广,可用于不同型号,不同装配工况的航天器总装过程。

【技术实现步骤摘要】
【专利摘要】本专利技术公开了一种利用视觉测量对机械臂运动路径补偿的方法,用于视觉引导机械臂的运动。该方法通过视觉测量识别机械臂、航天器、待装位置三者位置与理论模型中理论位置存在差异,补偿机械臂路径规划偏差,达到安全进出狭小空间的控制效果,满足航天器高精度高可靠性的装配需求。采用这种方法,可以对航天器实际位置与理想模型理论位置间存在误差进行识别,对机械臂运动路径进行补偿,使位置及路径控制更为精确,达到安全进出狭小空间的控制效果。本专利技术的测量方法适用范围广,可用于不同型号,不同装配工况的航天器总装过程。【专利说明】
本专利技术属于机械臂控制
,具体涉及一种利用视觉测量对机械臂运动路径的补偿方法。
技术介绍
航天器研制具有单件小批量的特点,目前的装配作业大量依赖人工操作,并辅以吊具、升降车、架梯等简易工具进行不同航天器的装配工作。这种装配方式存在一定的局限性:对于大纵深零部件的安装,由于操作人员臂展的限制,难以完成安装工作;对于大质量的零部件,人工长时间托举,容易造成疲劳,影响操作的安全性;对于操作空间狭小的情况,人工托举难以在狭小的空间对被安装件进行位姿调整,且易与周围物体发生磕碰;对于安装精度要求较高的零部件,人工安装难以控制安装精度,调整时间长。 在装配作用中,通常会使用机械臂(或称工业机器人,如市场上常见的ABB机器人、库卡机器人),机械被具有载重量大、定位精度高、响应速度快等特点,应用于航天器装配可以实现大尺寸、大重量零部件的位姿保持与调整,无需人力进行托举;与人工调整相比,机械臂具有较高的运动定位精度,可以对被安装件进行高精度的位姿调整,将被安装件快速调整到位,缩短安装时间;对于狭小空间的装配操作,可以通过机械臂的运动控制避免被安装件与周围物体磕碰,保证操作的安全。因此,采用机械臂对航天器进行装配,可以提高航天器总装的装配质量、装配效率和安全性。 目前,机械臂在工业应用中所采用的控制方式主要有以下几种: I)预先通过编程或示教确定机械臂的运动路径,机械臂在生产操作中不断重复完成相同的动作。 然而这种装配方式需要如下工况:机械臂的工位固定,待装配产品的装配工位固位,待装配产品形状一致,每个被装配的工件一致。因此,每次装配时机械臂的运动的目标相同,路径相同,不断重复即可,适用于批量较大产品的生产或搬运,如汽车生产线中的机械臂。而航天器属于单件小批量生产不适合这种方式:航天器需要在不同试验在不同的工位间转运,因此航天器的工位不固定;每个航天器形状各不相同,即使同一航天器根据试验要求不同,航天器表面及内部的状态不同,因此,每次装配的条件不同;航天器基本极少两个一样的工件,极少有相同的工件装配不同的航天器,因此每个工件的形状各不相同。因此,这种固定路径式的控制方式不适合航天器装配。 2)通过视觉引导机械臂的运动,即采用图像传感器采集机械臂周围环境的图像,系统自动对图像中的目标进行识别定位,据此控制机械臂的运动。 然而这种装配方式需要如下工况:机械臂的工位固定,待装配产品形状基本一致且简单易于识别,待装配产品周围无障碍物,只需要控制机械臂末端可达即可,对到达的过程中的运动路径并无避障要求。因此,这种控制方式适用于目标简单易于识别,目标大体位置明确,中间运动过程并无严格要求的生产中,通常被应用在自动化焊接系统中。而航天器属于单件小批量生产不适合这种方式:除航天器的工位不固定、每个工件均不相同外;航天器工件通常安装航天器的内部,周围有各种复杂的仪器设备和电缆,构成了机械臂装配路径上的障碍物,安装环境复杂;此外,需要安装在航天器内部的目标位置,在航天器外部难以直接观察到,视觉传感器难以直接观测和识别目标位置。因此,这种视觉引导的控制方式不适合航天器装配。 3)通过示教器、操纵杆等控制终端手动控制机械臂的运动。 这种方式通常被用于机械臂自身的调试,或远程控制机械臂完成相关操作。此类操作的装配质量受操作人员的个人技术水平,工作状态影响较大。且航天器内部仪器设备精密,对装配精度要求较高,人工操作精度不易量化和保证;同时航天器内部仪器设备较为贵重,且安装空间狭小,若发生碰撞等损伤除产生巨额经济损失外,还将严重影响型号研制进度和发射日期,对操作的安全性要求非常高。因此,这种控制方式存在因人为因素导致航天器产品碰伤或擦伤的风险。不适合航天器装配高可靠性安全性的装配要求。
技术实现思路
针对如上所述的技术问题,本专利技术从航天器装配的需求出发,结合机械臂常用的控制方式,提出一种利用视觉测量对机械臂运动路径补偿的方法,用于视觉引导机械臂的运动。采用这种方法,可以对航天器实际位置与理想模型理论位置间存在误差进行识别,对机械臂运动路径进行补偿,使位置及路径控制更为精确,达到安全进出狭小空间的控制效果。本专利技术的测量方法适用范围广,可用于不同型号,不同装配工况的航天器总装过程。 因此,本专利技术的目的在于提供一种,旨在通过视觉测量识别机械臂、航天器、待装位置三者位置与理论模型中理论位置存在差异,补偿机械臂路径规划偏差,达到安全进出狭小空间的控制效果,满足航天器高精度高可靠性的装配需求。 为达到以上目的,本专利技术采用的技术方案是: 一种,包括如下步骤: I)在机械臂末端执行器或者在负载附近便于操作的位置设置双目视觉传感器,双目视觉传感器与机械臂的控制系统进行电连接; 2)采用双目相机标定方法,对两个位置相对固定的相机相对位置互姿态进行标定,确定一个相机相对另一个相机的相对坐标位置与角度,即得到双目视觉测量系统的内部参数,进而得到双目测量系统的测量坐标系,根据此坐标系,对应得到被测点在其中的坐标值; 3)采用机械臂手眼标定的方法,确定双目测量坐标系与机械臂第六轴之间的位置关系即双目测量坐标系相对于机械臂第六轴(机器人末端所在关节)之间位置和角度关系; 4)测量航天器相对机械臂的距离,将此距离值输入机械臂控制系统,由控制系统驱动机械臂末端运动至航天器附近; 5)通过机械臂所携带的双目视觉传感器对航天器的特征点进行拍照测量;根据步骤2)、3)已标定的相对关系,经过坐标转换计算得到目标特征点在机械臂的基座坐标系即与机械臂基座固连的空间直角坐标系下的坐标值; 6)在航天器的理论三维模型中,读取航天器表面的特征点在航天器坐标系下的理论坐标值(如Pro/E模型中的测量功能),根据目标航天器的理论模型特征点在航天器坐标系下的理论坐标值与第5)步实际测量的特征点在机械臂基坐标系下的实际坐标值,对模型位置进行拟合,得到航天器坐标系在机械臂基坐标系下的三个坐标值及三个角度值(即6个自由度),即修正航天器理论模型相对机械臂固定基座的实际位置; 7)在航天器坐标系相对机械臂基坐标系的相对位置明确的情况下,与航天器坐标系固定在一起的航天器内部的各仪器设备的突出物即障碍物在机械臂基坐标系下的坐标值也随之确定,即对机械臂运动路径附近航天器内部的难以测量的突出物实际位置进行修正; 8)根据修正的航天器位置和突出物(障碍物)的位置,重新对机械臂路径进行规划,去除与障碍物干涉(即碰撞)的路径,修正不干涉的路径,使机械臂末端既可将工件运送至目标位置,又避免了运动过程机械臂各关节与航天器突出物间的干涉; 本文档来自技高网
...

【技术保护点】
一种基于视觉测量的机械臂运动路径补偿方法,包括如下步骤:1)在机械臂末端执行器或者在负载附近便于操作的位置设置双目视觉传感器,双目视觉传感器与机械臂的控制系统进行电连接;2)采用双目相机标定方法,对两个位置相对固定的相机相对位置互姿态进行标定,确定一个相机相对另一个相机的相对坐标位置与角度,即得到双目视觉测量系统的内部参数,进而得到双目测量系统的测量坐标系,根据此坐标系,对应得到被测点在其中的坐标值;3)采用机械臂手眼标定的方法,确定双目测量坐标系与机械臂第六轴之间的位置关系即双目测量坐标系相对于机械臂第六轴(机器人末端所在关节)之间位置和角度关系;4)测量航天器相对机械臂的距离,将此距离值输入机械臂控制系统,由控制系统驱动机械臂末端运动至航天器附近;5)通过机械臂所携带的双目视觉传感器对航天器的特征点进行拍照测量;根据步骤2)、3)已标定的相对关系,经过坐标转换计算得到目标特征点在机械臂的基座坐标系即与机械臂基座固连的空间直角坐标系下的坐标值;6)在航天器的理论三维模型中,读取航天器表面的特征点在航天器坐标系下的理论坐标值(如Pro/E模型中的测量功能),根据目标航天器的理论模型特征点在航天器坐标系下的理论坐标值与第5)步实际测量的特征点在机械臂基坐标系下的实际坐标值,对模型位置进行拟合,得到航天器坐标系在机械臂基坐标系下的三个坐标值及三个角度值(即6个自由度),即修正航天器理论模型相对机械臂固定基座的实际位置;7)在航天器坐标系相对机械臂基坐标系的相对位置明确的情况下,与航天器坐标系固定在一起的航天器内部的各仪器设备的突出物即障碍物在机械臂基坐标系下的坐标值也随之确定,即对机械臂运动路径附近航天器内部的难以测量的突出物实际位置进行修正;8)根据修正的航天器位置和突出物(障碍物)的位置,重新对机械臂路径进行规划,去除与障碍物干涉(即碰撞)的路径,修正不干涉的路径,使机械臂末端既可将工件运送至目标位置,又避免了运动过程机械臂各关节与航天器突出物间的干涉;9)当机械臂末端进入航天器内部后,重复以上步骤5)‑8),对航天器内部的特征点(即第一次观察不到的运动路径附近的内部特征点)或突出点,进行再次双目测量,修正内部突出物(障碍物)的位置,对机械臂进一步探伸进航天器内部的路径进行修正;反复迭代以上过程,直到双目视觉传感器观测到工件的待装位置,识别待装位置的特征点(即安装的定位销孔或螺钉孔),修正最后一步运动路径,驱动工件至目标位置结束装配。...

【技术特征摘要】

【专利技术属性】
技术研发人员:易旺民卫月娥刘宏阳唐赖颖姜旭胡瑞钦傅浩张立建张成立于兆吉
申请(专利权)人:北京卫星环境工程研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1