【技术实现步骤摘要】
本专利技术涉及三维植物建模
,尤其涉及植物扫描与重建方法。
技术介绍
三维植物建模是一个重要且应用广泛的研究课题。游戏设计与开发中,场景中植物模型质量的高低,直接影响游戏的真实感和用户体验。在植物学领域,三维植物建模可以用于研究植物的生长和在不同物理环境下的行为。在农业上,三维植物模型有助于病虫害防治和施肥方法的研究。由于植物结构复杂,直接让美工来进行与实物相符的精确建模是困难的。通过三维扫描仪扫描植物的三维点云数据,并通过重建算法来获得真实的植物模型相比手工建模更为快捷可行。然而,由于植物叶片的相互遮挡,想获得植物的完整扫描数据是很困难的。并且,由于叶片是二维曲面,叶梗和茎秆是三维柱体,传统的曲面重建算法很难直接适用于这种情况。因此,要解决的问题为两个方面:1、如何获取植物完整的三维点云数据;2、如何快速精确地自动将获得的点云数据重建为曲面模型。植物的完整扫描与重建是一个很有挑战性的课题。来自日本的研究人员Takashi Ijiri提出了使用CT扫描设备来获取花的三维数据,并交互式地重建出曲面模型。但是CT扫描设备或者高精度激光扫描仪等十分昂贵,用它来扫描和重建植物模型的成本太高,一般用户难以承受。并且他们的重建方法不能很好地处理复杂的叶片相互之间的遮挡,因此需要大量的用户交互,并不便于使用。还有一些研究人员提出了从三维点云场景中提取树木的骨架来重建树木的方法。但是这种方法只用于粗糙地重建树枝和树干,没有 ...
【技术保护点】
一种植物扫描与重建方法,其特征在于,包括:对植物进行整体扫描,获得植物的整体扫描数据;对植物的每个叶子进行单独扫描,获得每个叶子的点云数据;将每个叶子的点云数据重建为曲面模型,通过泊松重建算法得到茎杆的重建结果;将重建后的所有叶子和茎杆与植物的整体扫描数据对齐;将所有叶子对齐后的点云数据融合到一起,得到整棵植物模型;其中,将每个叶子的点云数据重建为曲面模型,包括:利用L1‑中值算法提取叶子的骨架;沿着骨架对叶子的点云做垂直切片;根据点云切片的纵横比将切片分为叶片和叶柄两部分;采用基于曲率的二次距离极小化方法,对每个切片拟合一个非统一有理B样条NURBS曲线,叶片拟合一个非闭合曲线,叶柄拟合闭合曲线;优化求解所有NURBS控制点的最佳位置;连接叶子的所有切片形状,得到叶子的形状。
【技术特征摘要】
1.一种植物扫描与重建方法,其特征在于,包括:
对植物进行整体扫描,获得植物的整体扫描数据;
对植物的每个叶子进行单独扫描,获得每个叶子的点云数据;
将每个叶子的点云数据重建为曲面模型,通过泊松重建算法得到茎杆的重建结果;
将重建后的所有叶子和茎杆与植物的整体扫描数据对齐;
将所有叶子对齐后的点云数据融合到一起,得到整棵植物模型;
其中,将每个叶子的点云数据重建为曲面模型,包括:
利用L1-中值算法提取叶子的骨架;
沿着骨架对叶子的点云做垂直切片;
根据点云切片的纵横比将切片分为叶片和叶柄两部分;
采用基于曲率的二次距离极小化方法,对每个切片拟合一个非统一有理B样条NURBS
曲线,叶片拟合一个非闭合曲线,叶柄拟合闭合曲线;
优化求解所有NURBS控制点的最佳位置;
连接叶子的所有切片形状,得到叶子的形状。
2.如权利要求1所述的方法,其特征在于,采用手持式结构光3D扫描仪,对植物进
行整体扫描,以及,对植物的每个叶子进行单独扫描。
3.如权利要求1所述的方法,其特征在于,优化求解所有NURBS控制点的最佳位置,
包括:
通过BFGS算法极小化如下目标函数,得到NURBS控制点的最佳位置:
f(x)=Edata(x)+αEsmooth(x)+βEbound(x)+γEround(x);
其中,x为要求解的控制点位置;Edata为所有点云中的点到NURBS曲线最近距离的
累加;Esmooth为不同NUBRS曲线上相同标识ID的控制点连成的曲线的不光滑度;Ebound为
非闭合NURBS端点到叶片点云边界处的最近距离的累加,Eround为每个闭合NURBS曲线
的周长面积比;α、β、γ为常数。
4.如权利要求1所述的...
【专利技术属性】
技术研发人员:黄惠,尹康学,
申请(专利权)人:中国科学院深圳先进技术研究院,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。