本发明专利技术涉及一种利用矿井工作面不同生产工序预测瓦斯涌出量的方法,包括如下步骤:通过现有的煤矿安全监控系统获取需要进行瓦斯涌出量预测处的瓦斯传感器监测到的瓦斯浓度时间序列,同时获取该瓦斯传感器对应工作面的采煤机或者掘进机相应的开停传感器的信号值时间序列。再根据开停传感器的信号值,按照巡检时刻点对瓦斯浓度时间序列进行划分,划分为采煤工序和非采煤工序两类。将的原始的瓦斯浓度时间序列去除采煤工序对应的瓦斯浓度时间序列,按照时间先后顺序连接后形成非采煤工序的瓦斯浓度时间序列;将采煤工序对应的瓦斯浓度时间序列按照时间的先后顺序连接独立形成新的瓦斯浓度时间序列,分别进行瓦斯浓度或者瓦斯涌出量的预测。
【技术实现步骤摘要】
本专利技术涉及煤矿安全领域,特别涉及一种利用矿井工作面不同生产工序预测瓦斯涌出量的思路和方法。
技术介绍
国家安全监管总局和国家煤矿安监局在2013年签发的28号文件要求监控系统增加瓦斯涌出量预测功能,瓦斯涌出量的预测方法包括统计法和计算法,计算法主要针对新设计矿井;统计法是主要针对正在开采的矿井和工作面进行瓦斯涌出量预测的方法,是根据矿井在以往生产过程中积累的大量不同深度相对瓦斯涌出量,整理分析找出变化关系的统计规律,推算出相邻或延伸水平瓦斯涌出量的方法,简单总结就是利用历史涌出规律来预测未来的涌出。 对目前矿井工作面涌出瓦斯做分源辨识发现,主要有三部分瓦斯涌出类型,分别是临近层瓦斯涌出、煤壁瓦斯涌出和落煤的瓦斯涌出。三种主要的涌出形式按照涌出的变化和特征又可以分成两类,一类是缓变量瓦斯涌出,包括邻近层瓦斯涌出和煤壁瓦斯涌出,随着时间的变化涌出量变化缓慢且连续。第二类属于突变量瓦斯涌出,包括落煤的瓦斯涌出和其他导致瓦斯突然涌出的情况,瓦斯浓度变化快,涌出量不连续,和不同的生产工序联系紧S。 现有的瓦斯浓度和瓦斯量预测方法以矿井瓦斯监测数据为研究对象,将时间序列分析方法应用于矿井瓦斯预测的研究比较多,主要体现在煤与瓦斯突出危险性与趋势判断、瓦斯涌出量预测和瓦斯浓度预测等方面;通过ARMA模型方法、小波径相基函数(W-RBF,Wavelet-Radial Basis Funct1n)神经网络的瓦斯浓度时间序列预测方法、人工神经网络等方法对瓦斯浓度和瓦斯涌出量进行提前预测。但上述方法依托的基础数据是连续的时间序列数据,且并没有对瓦斯浓度时间序列进行区分,对于不同的生产工序没有分别预测瓦斯涌出量。
技术实现思路
本专利技术要解决的技术问题是提供一种通过对生产工序的不同划分,将连续时刻的瓦斯涌出分成不同的类型,按照不同的生产工序分别预测瓦斯涌出量的方法。 实现本专利技术目的的技术方案是提供一种,包括如下步骤:①通过现有的煤矿安全监控系统获取需要进行瓦斯涌出量预测处的瓦斯传感器监测到的瓦斯浓度时间序列,同时获取该瓦斯传感器对应工作面的采煤机或者掘进机相同巡检时刻的与前述采煤机或者掘进机对应的开停传感器的信号值时间序列,所述开停传感器的信号值用于指示采煤机或者掘进机的工作状态,包括用于指示采煤机或者掘进机处于工作状态和非工作状态两个值;②根据与瓦斯传感器对应的采煤机或者掘进机的开停传感器的信号值,按照巡检时刻点对瓦斯浓度时间序列进行划分,划分为采煤工序和非采煤工序两类,采煤机处于工作状态所对应的瓦斯浓度时间序列为采煤工序,采煤机处于非工作状态所对应的瓦斯浓度时间序列为非采煤工序;③将步骤①得到的原始的瓦斯浓度时间序列去除采煤工序对应的的瓦斯浓度时间序列,按照时间先后顺序连接后形成非采煤工序的瓦斯浓度时间序列,记做瓦斯浓度时间序列I ;将采煤工序对应的瓦斯浓度时间序列取出来,按照时间的先后顺序连接独立形成新的瓦斯浓度时间序列,记做瓦斯浓度时间序列2 ;④以划分后的序列I和序列2为历史基础数据,分别进行瓦斯浓度或者瓦斯涌出量的预测。 进一步的,步骤①中,采煤机或者掘进机对应的开停传感器的信号值为I代表采煤机处于工作状态,开停传感器的信号值为O代表采煤机处于非工作状态。 本专利技术具有积极的效果:(I)本专利技术的首次对工作面瓦斯传感器所采集的瓦斯浓度时间序列利用相对应的开停传感器区分为采煤工序序列和非采煤工序序列,提出了依据开停传感器对瓦斯浓度时间序列进行划分和处理的思路和方法。 (2)本专利技术的首次提出针对不同生产工序瓦斯涌出量序列分别预测瓦斯涌出量的方法。在进行瓦斯涌出量预测时,首先判断当前生产工序,然后利用当前工序历史瓦斯涌出量时间序列来预测当前瓦斯涌出量。 (3)本专利技术的首次将瓦斯传感器采集的瓦斯浓度时间序列和相对应的开停传感器数据结合起来,综合分析和预测工作面的瓦斯涌出量。将孤立的瓦斯涌出量序列利用开停传感器在时间和空间上合理的和生产工序、生产过程结合了起来,对瓦斯浓度时间序列进行区分,对于不同的生产工序分别预测瓦斯涌出量,预测更为精确,对煤矿安全建设显然更好。 【附图说明】 图1为瓦斯浓度时间序列图;图2为对应图1时刻的采煤机的开停信号值图;图3为瓦斯浓度时间序列不同生产工序划分图;图4为将不同生产工序划分后的瓦斯浓度时间序列。 【具体实施方式】 (实施例1)瓦斯涌出在不同的生产工序规律是不相同的,如果能够对瓦斯浓度时间序列进行合理的分段后,再分别利用合适的基于统计学基础的预测方法工具,会取得更为准确的预测结果。对矿井中监测到的瓦斯浓度时间序列进行分析可以发现,矿井工作面瓦斯浓度的监测大多设置在回风巷道中,预测工作面瓦斯涌出量也就需要从这些监测点所能监测到的瓦斯浓度时间序列中入手。回风巷道中瓦斯的来源主要分为三部分,分别是:邻近层瓦斯涌出、巷道煤壁瓦斯涌出和落煤以及其他导致瓦斯突然释放的涌出。其中邻近层瓦斯涌出、巷道煤壁瓦斯涌出均属于缓变量,涌出量变化缓慢且连续,在统计学的基础上比较容易找出变化规律。对于落煤造成的瓦斯涌出,瓦斯涌出量变化迅速且不连续,和不同的生产工序紧密的联系在一起。虽然在统计学的基础上也能找到相应的变化规律,但其变化和发展规律与缓变量瓦斯的特征是完全不相同的。所以有必要通过将缓变量瓦斯涌出和突变量瓦斯涌出进行分开预测,将它们当做两个不同的瓦斯浓度时间序列进行预测,本专利技术提供了一种很好地将这两种瓦斯浓度出分开预测的方法,本实施例的包括如下步骤:①通过现有的煤矿安全监控系统获取需要进行瓦斯涌出量预测处的瓦斯传感器监测到的瓦斯浓度时间序列值,本实施例选取某掘进工作面的瓦斯传感器某日12时到16时的瓦斯浓度数据进行分析,如图1所示,同时获取该瓦斯传感器对应工作面采煤机(或者掘进机)相同巡检时刻的与相应采煤机(或者掘进机)对应的开停传感器的信号,本实施例获得的采煤机(或者掘进机的)的开停传感器的信号值如图2所示,其中开停传感器的信号值为I代表米煤机处于工作状态,开停传感器的信号值为O代表米煤机处于不工作状态。 ②根据与瓦斯传感器对应的采煤机的开停传感器的信号值,按照巡检时刻点对瓦斯浓度时间序列进行划分,划分为采煤工序和非采煤工序两类。本实施例按照图1和图2所示数据,如图3所示的过程进行划分,瓦斯浓度时间序列中,区间1+区间2+区间3为采煤工序,其他时间序列为非采煤工序,即采煤机处于工作状态所对应的瓦斯浓度时间序列为采煤工序,采煤机处于非工作状态所对应的瓦斯浓度时间序列为非采煤工序。 ③将原始的瓦斯浓度时间序列去除采煤工序的瓦斯浓度时间序列,按照时间先后顺序连接后形成非采煤工序的瓦斯浓度时间序列,记做瓦斯浓度时间序列I;将采煤工序的瓦斯浓度时间序列取出来,按照时间的先后顺序连接独立形成新的瓦斯浓度时间序列,记做瓦斯浓度时间序列2,如图4所示。 ④以划分后的序列I和序列2为历史基础数据,分别进行瓦斯浓度或者瓦斯涌出量的预测,特别指出的是预测瓦斯浓度和瓦斯涌出量实质上是一样的,瓦斯涌出量是通过瓦斯浓度与风量值的成绩计算而来的。对序列I和序列2的预测可以通过包括ARMA模型方法、小波与径相基函数神经网络的瓦斯浓度时间序列预测方法、人工神经网络等方法在本文档来自技高网...
【技术保护点】
一种利用矿井工作面不同生产工序预测瓦斯涌出量的方法,其特征在于包括如下步骤:①通过现有的煤矿安全监控系统获取需要进行瓦斯涌出量预测处的瓦斯传感器监测到的瓦斯浓度时间序列,同时获取该瓦斯传感器对应工作面的采煤机或者掘进机相同巡检时刻的与前述采煤机或者掘进机对应的开停传感器的信号值时间序列,所述开停传感器的信号值用于指示采煤机或者掘进机的工作状态,包括用于指示采煤机或者掘进机处于工作状态和非工作状态两个值;②根据与瓦斯传感器对应的采煤机或者掘进机的开停传感器的信号值,按照巡检时刻点对瓦斯浓度时间序列进行划分,划分为采煤工序和非采煤工序两类,采煤机处于工作状态所对应的瓦斯浓度时间序列为采煤工序,采煤机处于非工作状态所对应的瓦斯浓度时间序列为非采煤工序;③将步骤①得到的原始的瓦斯浓度时间序列去除采煤工序对应的的瓦斯浓度时间序列,按照时间先后顺序连接后形成非采煤工序的瓦斯浓度时间序列,记做瓦斯浓度时间序列1;将采煤工序对应的瓦斯浓度时间序列取出来,按照时间的先后顺序连接独立形成新的瓦斯浓度时间序列,记做瓦斯浓度时间序列2;④以划分后的序列1和序列2为历史基础数据,分别进行瓦斯浓度或者瓦斯涌出量的预测。...
【技术特征摘要】
1.一种利用矿井工作面不同生产工序预测瓦斯涌出量的方法,其特征在于包括如下步骤: ①通过现有的煤矿安全监控系统获取需要进行瓦斯涌出量预测处的瓦斯传感器监测到的瓦斯浓度时间序列,同时获取该瓦斯传感器对应工作面的采煤机或者掘进机相同巡检时刻的与前述采煤机或者掘进机对应的开停传感器的信号值时间序列,所述开停传感器的信号值用于指示采煤机或者掘进机的工作状态,包括用于指示采煤机或者掘进机处于工作状态和非工作状态两个值; ②根据与瓦斯传感器对应的采煤机或者掘进机的开停传感器的信号值,按照巡检时刻点对瓦斯浓度时间序列进行划分,划分为采煤工序和非采煤工序两类,采煤机处于工作状态所对应的瓦斯浓度时间序列为采煤工序,采煤机处于非...
【专利技术属性】
技术研发人员:屈世甲,李继来,徐辉,胡文涛,贾咏洁,刘丽静,王华平,王芳,
申请(专利权)人:天地常州自动化股份有限公司,中煤科工集团常州研究院有限公司,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。