本发明专利技术涉及超级杂交稻秧盘秧穴播种量检测方法及装置,检测装置包括摄像头、计算机及红外光电传感模块;当红外光电传感模块检测播种后的水稻秧盘随传送带到达拍摄区域时,向计算机输出电平信号,计算机控制摄像头拍摄秧盘图像;计算机对秧盘图像进行二值化处理,用投影法定位秧盘检测区域和秧穴,提取连通区域及其形状特征参数,对形状特征参数的主成分进行分析以降维,建立种子连通区域颗粒数检测的BP神经网络,最后采用BP神经网络检测秧盘的播种量。本发明专利技术依据种子连通区域的形状特征结合BP神经网络检测秧穴播种量,按“穴粒数”检测思想,实现播种量的精确检测,为超级杂交稻精密育秧恒量播种装置的研究奠定了基础。
【技术实现步骤摘要】
基于机器视觉的超级杂交稻穴播量的检测方法及装置
本专利技术涉及一种超级杂交稻秧盘播种后播种量检测方法及装置,尤其是一种基于机器视觉的超级杂交稻穴播量的检测方法及装置。
技术介绍
超级杂交稻因其增产显著,在我国得到大面积推广应用;因具有超强的分蘖能力,所以要求每穴插1-2株,依靠分蘖能力增加有效穗数,提高产量。根据超级杂交稻的这种生长特性,通常育秧要求低播量精密育秧,保证2-3粒/穴。因水稻种子要催芽后播种,播种期间种芽长度、种子含水量和种子形状尺寸都要发生变化,影响播种性能,目前的精密播种技术和手段难达到上述要求。因此有必要在播种过程中对每秧穴播种量进行精确检测,及时发现播种状态的变化,为后续调控播种量或补种工作提供依据,以保证秧盘上每穴的种子数保持一致,实现精密恒量播种作业。
技术实现思路
为了上述技术问题,本专利技术提出基于机器视觉的超级杂交稻穴播量的检测方法及装置,实现超级杂交稻穴播量的精确检测,提高播种质量,实现精量、恒量播种作业。本专利技术检测装置采用如下技术方案:基于机器视觉的超级杂交稻穴播量的检测装置,包括摄像头、计算机及红外光电传感模块,红外光电传感模块和摄像头安装在水稻育秧播种流水线上,红外光电传感模块、摄像头分别与计算机连接;当红外光电传感模块检测播种后的水稻秧盘随传送带到达摄像头的拍摄区域时,向计算机输出电平信号,计算机控制摄像头拍摄秧盘图像;所述计算机对秧盘图像进行二值化处理,用投影法定位秧盘检测区域和秧穴,提取种子连通区域及连通区域的形状特征参数,并对连通区域的形状特征参数的主成分进行分析,对连通区域的形状特征参数降维,然后建立种子连通区域颗粒数检测的BP神经网络,最后采用BP神经网络检测秧盘的播种量。本专利技术检测方法采用如下技术方案:基于机器视觉的超级杂交稻穴播量的检测方法,包括以下步骤:S1、当检测到秧盘到达拍摄区域时,拍摄秧盘图像;S2、获取秧盘图像进行二值化处理,把种子和土壤背景分离,得到二值图像;S3、利用投影法定位秧盘检测区域和秧穴;S4、提取二值图像中种子连通区域及连通区域的形状特征参数;S5、对连通区域的形状特征参数进行主成分分析,实现连通区域的形状特征参数降维;S6、建立种子连通区域颗粒数检测的BP神经网络;S7、采用BP神经网络检测秧盘的播种量。优选地,步骤S2采用腐蚀和膨胀方法去除秧盘图像中的噪声点和孔洞,使用OSTU自适应阈值法确定分割阈值,对秧盘图像进行二值化处理,把种子和土壤背景分离。优选地,步骤S3定位时,沿水平方向和垂直方向作投影,投影图中水平方向和垂直方向最小值的像素坐标确定为秧盘上一条水平或垂直的秧穴边界连线。优选地,步骤S4所述连通区域的形状特征参数包括连通区域的面积、周长、形状因子和二阶偏心率,以及连通区域边界的7个不变矩特征;步骤S5所述主成分分析是将多个变量通过线性变换以选出较少个数变量。优选地,步骤S6建立BP神经网络后,以对主成分分析得到的主成分进行归一化处理后的数据作为输入向量,以连通区域颗粒数的种类作为输出向量,通过BP神经网络对输入向量和输出向量样本集训练,对BP神经网络的阈值和权值进行学习和修正,使BP神经网络实现给定的输入输出映射关系。本专利技术的检测原理如下:精密育秧播种流水线由铺底土、淋水、播种、覆土等工序组成,基于机器视觉的超级杂交稻穴播量检测工序设置在秧盘播种后,覆表土工序之前。秧盘经过铺底土工序后,底土覆盖秧穴,采集的图像不显示秧穴,要实现穴播量检测,需要定位检测区域及秧穴。水稻种子从振动播种装置播到秧盘中,在秧穴中呈现的形态各异,有单粒、多粒,多粒的种子存在重叠、交叉、粘连或混合的情况,且土壤中混有杂质和碎米。传统的图像分割算法对重叠或交叉的种子进行分割,不可避免过分割现象,造成颗粒计数准确率低。考虑到每个种子连通区域的形态特征在一定程度上反映其包含的种子数量,本专利技术通过提取秧穴种子连通区域的4个形状特征和7个不变矩特征,主成分分析进行信息降维,由BP神经网络检测连通区域的种子数量,按“穴粒数”检测思想,对超级杂交稻秧盘图像每穴播种量进行检测,从左到右、从上到下依次扫描检测区域内的秧穴。本专利技术相对于现有技术具有如下有益效果:依据种子连通区域的形状特征结合BP神经网络检测秧穴播种粒数,按“穴粒数”检测思想,实现播种量的精确检测,为超级杂交稻精密育秧恒量播种装置的研究奠定了基础。附图说明图1是本专利技术的装置结构示意图;图2是本专利技术检测流程图;图3为二值图像投影图;图4为目标检测区域和秧穴定位图;图5为连通区域边界示意图。具体实施方式为了使本专利技术目的、技术方案和优点更加清楚明白,以下结合附图及实施例对本专利技术作进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本专利技术,而不用于限定本专利技术。参见图1,本专利技术检测装置包括:光源1、数字摄像头2、暗箱3、计算机4及红外光电传感模块5。红外光电传感模块5和数字摄像头2安装在水稻育秧播种流水线上。播种后的水稻秧盘6在流水线上随传送带到达摄像头的拍摄区域,红外光电传感模块5检测到秧盘6到达拍摄区域时,输出低电平信号,红外光电传感模块5通过串口接线与计算机4通信,计算机4通过USB线控制数字摄像头2拍摄秧盘图像。为获取高对比度的清晰图像,在拍摄区域上安装暗箱3,暗箱3中安装光源1。计算机4开发图像处理软件,完成基于机器视觉和BP神经网络超级杂交稻秧盘秧穴播种量检测。计算机4所开发的图像处理软件完成以下功能:(1)图像预处理和二值化:计算机通过数字摄像头获取秧盘的RGB图像,需要消除背景噪声影响,然后对图像进行阈值分割,提取种子二值图像。(2)投影法定位秧盘检测区域和秧穴。(3)提取种子连通区域及连通区域的形状特征信息:对种子二值图像提取连通区域,对每个连通区域计算其形状特征值,包括面积、周长、形状因子和二阶偏心率,以及连通区域边界的7个不变矩,共11个形状特征。(4)主成分分析,对连通区域形状特征参数降维。(5)建立种子连通区域颗粒数检测的BP神经网络:设计BP神经网络结构,包括输入层、隐层及输出层节点数,通过样本训练确立输入输出向量映射关系。(6)检测每秧穴的播种量。参见图2,本专利技术检测方法,其流程包括:S1、当检测到秧盘到达拍摄区域时,拍摄秧盘图像,获取秧盘的RGB图像。S2、计算机获取秧盘RGB图像进行预处理和二值化处理:将秧盘RGB图像转化为灰度图像,由于背景噪声和孔洞的存在,运用形态学的腐蚀和膨胀方法去除噪声点和孔洞,使用OSTU自适应阈值法确定分割阈值,对灰度图像进行二值化处理,把种子和土壤背景分离。S3、利用投影法定位秧盘检测区域和秧穴。定位时,沿水平方向和垂直方向作投影,即像素值的累加,投影图中水平方向和垂直方向最小值的像素坐标确定为秧盘上一条水平或垂直的秧穴边界连线。投影图中水平方向和垂直方向最小值的像素坐标选择准则如下:如果水平方向和垂直方向投影图上最小值的波谷只有一个,则波谷最小值的中点坐标为秧盘上一条水平或垂直的秧穴边界连线;如果最小值的波谷有多个,则取最小值数量最多的波谷的中点坐标为秧盘上一条水平或垂直的秧穴边界连线,如图3所示。作为一种优选方案,数字摄像头物理像素为1280像素×720像素,拍摄秧盘视窗为11穴/行×7穴/列,每秧穴大小约为116像素×10本文档来自技高网...
【技术保护点】
基于机器视觉的超级杂交稻穴播量的检测装置,其特征在于,包括摄像头、计算机及红外光电传感模块,红外光电传感模块和摄像头安装在水稻育秧播种流水线上,红外光电传感模块、摄像头分别与计算机连接;当红外光电传感模块检测播种后的水稻秧盘随传送带到达摄像头的拍摄区域时,向计算机输出电平信号,计算机控制摄像头拍摄秧盘图像;所述计算机对秧盘图像进行二值化处理,用投影法定位秧盘检测区域和秧穴,提取种子连通区域及连通区域的形状特征参数,并对连通区域的形状特征参数的主成分进行分析,对连通区域的形状特征参数降维,然后建立种子连通区域颗粒数检测的BP神经网络,最后采用BP神经网络检测秧盘的播种量。
【技术特征摘要】
1.基于机器视觉的超级杂交稻穴播量的检测装置,其特征在于,包括摄像头、计算机及红外光电传感模块,红外光电传感模块和摄像头安装在水稻育秧播种流水线上,红外光电传感模块、摄像头分别与计算机连接;当红外光电传感模块检测播种后的水稻秧盘随传送带到达摄像头的拍摄区域时,向计算机输出电平信号,计算机控制摄像头拍摄秧盘图像;所述计算机对秧盘图像进行二值化处理,用投影法定位秧盘检测区域和秧穴,提取种子连通区域及连通区域的形状特征参数,并对连通区域的形状特征参数的主成分进行分析,对连通区域的形状特征参数降维,然后建立种子连通区域颗粒数检测的BP神经网络,最后采用BP神经网络检测秧盘的播种量;其中,利用投影法定位秧盘检测区域和秧穴时,沿水平方向和垂直方向作投影,投影图中水平方向和垂直方向最小值的像素坐标确定为秧盘上一条水平或垂直的秧穴边界连线;所述投影图中水平方向和垂直方向最小值的像素坐标选择准则如下:如果水平方向和垂直方向投影图上最小值的波谷只有一个,则波谷最小值的中点坐标为秧盘上一条水平或垂直的秧穴边界连线;如果最小值的波谷有多个,则取最小值数量最多的波谷的中点坐标为秧盘上一条水平或垂直的秧穴边界连线。2.根据权利要求1所述的检测装置,其特征在于,所述检测装置还包括安装在摄像头拍摄区域的暗箱,以及安装在暗箱中的光源。3.根据权利要求1所述的检测装置,其特征在于,所述连通区域的形状特征包括面积、周长、形状因子和二阶偏心率,以及连通区域边界的7个不变矩。4.基于机器视觉的超级杂交稻穴播量的检测方法,其特征在于,包括以下步骤:S1、当检测到秧盘到达拍摄区域时,拍摄秧盘图像;S2、获取秧盘图像进行二值化处理,把种子和土壤背景分离,得到二值图像;S3、利用投影法定位秧盘检测区域和秧穴;S4、提取二值图像中种子连通区域及连通区域的形状特征参数;...
【专利技术属性】
技术研发人员:马旭,谭穗妍,齐龙,李泽华,梁仲维,
申请(专利权)人:华南农业大学,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。