一种数值孔径可控的微透镜阵列的电辅助制造方法技术

技术编号:11003405 阅读:204 留言:0更新日期:2015-02-05 03:35
一种数值孔径可控的微透镜阵列的电辅助制造方法,采用透明导电玻璃作为基材,先在基材上制备介电层,再在介电层上制备微型液滴阵列,然后搭接直流电源,将透明导电玻璃的导电面接入电压负极端,并将插入微型液滴的铜丝电极接入电压的正极端施加电压,增大电压可减小微型液滴的表观接触角,同时增大微型液滴的曲率半径,对不同的微型液滴施加不同的电压可获得不同的曲率半径,最后撤去电压并抬起铜丝电极,采用紫外灯箱辐照将成型的微型液滴阵列固化,获得变数值孔径的固态微透镜阵列,本发明专利技术在电润湿作用下能够精确且可重复地调控微型液滴的接触角,实现了在同一个光学器件上获得具有不同数值孔径的微透镜阵列。

【技术实现步骤摘要】

本专利技术涉及微透镜阵列制造
,特别涉及。
技术介绍
微透镜阵列在许多涉及显示器件的领域中被广泛使用,比如投影仪,CXD组件和摄像机镜头等。常见的微透镜阵列多为尺寸均一,大小相同,且数值孔径一致的微透镜组成的阵列。这些微透镜阵列的制造方法有多种,其中包括机械精铣加工法、光刻热回流法、湿法腐蚀法、激光刻蚀法和双光子干涉曝光法等。一般而言,这些方法各自具有其特点和不足,但其共同的特点是相同数值孔径的微透镜阵列的并行制造。然而,针对某些特殊的场合,比如光学MEMS中,有时候需要在同一个芯片器件的不同区域采用到具有不同数值孔径的微透镜阵列,以获得特殊的成像需求。这种情况下,采用如上所述的方法基本上很难在同一个器件区域获得具有不同数值孔径(或者表观曲率)的透镜阵列。 因此,有些科学家采用电润湿原理(EW,通过施加电压使液滴接触角减小)实现了可变数值孔径的液态微透镜,但目前该方法仍处于实时调控数值孔径的阶段,主要偏向于实时可控成像方面的应用。针对某些光学MEMS器件中需要采用固定数值孔径的微透镜阵列的情况,同样可以利用电润湿的原理先改变液态透镜的数值孔径,再将液态微透镜进行固化,从而形成变数值孔径的固态微透镜阵列。
技术实现思路
为了克服上述现有技术的缺点,本专利技术的目的在于提供,即采用介电层上的电润湿(EWOD)的原理,实现在同一个光学器件表面获得具有多种数值孔径的微透镜阵列;此方法简单,可通过手动调控或程序精确调控,实现一种特殊微透镜阵列的串行制造。 为了达到上述目的,本专利技术采用以下技术方案予以实现。 ,包括以下步骤: I)准备透明导电玻璃作为基材; 2)在透明导电玻璃基材的导电面上制备介电层; 3)在介电层表面施加微型液滴阵列; 4)搭接直流电源,将透明导电玻璃的导电面接入电压的负极端,并将插入微型液滴的铜丝电极接入电压的正极端,闭合电源开关对微型液滴施加电压; 5)在电润湿作用力的驱动下,增大所施加的直流电压将会减小微型液滴的表观接触角,进而增大微型液滴的曲率半径,因此对不同的微型液滴施加不同的直流电压获得不同的曲率半径; 6)断开直流电压电源,抬起铜丝电极,采用紫外灯箱辐照使电场辅助形变的微型液滴阵列固化,进而获得具有变数值孔径的固态微透镜阵列。 所述的基材采用ITO (氧化铟锡)、FTO (含氟氧化锡)或AZO (氧化铝锌)的镀膜玻璃。 所述的介电层为透明薄膜,是无机材料的薄膜,或是聚合物薄膜,无机材料的薄膜为二氧化硅薄膜、氧化铝陶瓷薄膜或钛酸钡陶瓷薄膜;聚合物薄膜为PMMA(聚甲基丙烯酸甲酯)、SU-8负性光刻胶、PVDF(聚偏氟乙烯)、环氧树脂的聚合物或NOA系列(光学粘结剂)、纳米压印胶的紫外固化聚合物固化后的薄膜。 所述的介电层为采用旋涂或蒸镀法所制备的光滑表面,或是采用纳米压印的方法所制备的微纳米织构化的粗糙表面。 所述的用于制备微透镜阵列的微型液滴的材料为液态的PMMA、SU-8、环氧树脂、NOA系列或纳米压印胶。 所述的微型液滴的施加方式采用喷墨打印或数字微量进给器。 所述的微型液滴的体积是1pl?10 μ 1,根据不同材料之间表面张力作用的不同获得大小不等的初始表观接触角。 所述的铜丝电极直径为30?100 μ m,其插入微型液滴的过程通过C⑶放大到显示器上的方式来辅助对准。 本专利技术的特点在于,利用介电层上电润湿原理(EWOD)对布置在透明介电层表面的微型液滴阵列依次施加不同的直流电压,使初始状态相同的微型液滴发生精确可控的润湿性形变;并利用介电层表面的粘性作用所引起的接触角滞后使微型液滴在撤去电压后也能够保持形变,最终对微型液滴阵列进行紫外固化后可重复性地获得不同数值孔径的微透镜阵列。 【附图说明】 图1是透明导电玻璃基材的示意图。 图2是在基材表面制备介电层薄膜的示意图。 图3是在介电层薄膜表面施加微型液滴的示意图。 图4是在微型液滴与透明导电玻璃之间施加电压之前的示意图。 图5是为不同的微型液滴施加不同电压(U0<U1<U2<U3)之后的示意图。 图6是将微型液滴阵列进行紫外辐照固化后所形成的微透镜阵列的示意图。 图7(a)是所制备的变数值孔径的微透镜阵列的侧向显微镜照片,(b)是该微透镜阵列的CXD成像。 具体实施方法 下面结合附图对本专利技术做进一步的详细说明。 ,包括以下步骤: I)参照图1,以厚度为2mm的ITO透明导电玻璃I作为基材,并依次采用丙酮、乙醇和去离子水进行超声清洗,氮气吹干后,在150°C烘箱中烘烤Ih ; 2)参照图2,在ITO透明导电玻璃I上滴加5?10 μ I的Ν0Α61 ( 一种紫外固化型的光学粘结剂),采用柔性的PDMS (聚二甲基硅氧烷)微纳米织构化模板进行纳米压印,紫外福照3?5min固化并脱模后,形成一层厚度为5?10 μ m的具有微纳米织构化复型表面的N0A61薄膜的介电层2 ; 3)参照图3,采用数字微量进给器在N0A61薄膜介电层2表面施加大小一致、体积均为0.1?I μ I的Ν0Α61微型液滴3 ; 4)参照图4,搭接直流电压,将透明导电玻璃I的导电面接入电压负极端,并将插入到微型液滴3的铜丝电极4接入电压正极端,闭合电源开关对微型液滴3施加电压; 5)参照图5,通过调节所施加的直流电压大小来控制微型液滴的表观接触角,同时调节微型液滴的曲率半径,按照U0<U1<U2<U3的顺序,依次施加于不同的微型液滴3,获得表观接触角减小而曲率半径增大的微型液滴3 ; 6)参照图6,断开直流电压电源,抬起铜丝电极4,由于介电层2表面的粘性作用所引起的接触角滞后,使微型液滴3得以维持在变化后的形状而不会发生回复,以此实现数值孔径一一对应的精确调控;将样片置于紫外灯箱中辐照3?5min即使微型液滴发生固化并形成定型的数值孔径不同的微透镜阵列5,其实物的侧向显微镜照片及CCD成像如图7所示。 所述的介电层2或通过表面织构化的PDMS模具进行纳米压印的方法获得具有粗糙表面的N0A61薄膜介电层,以获得较大的接触角滞后,从而实现直流电压对微型液滴3曲率半径的最大限度的精确可控。 所述的铜丝电极4的应当尽可能地细,以免在插入或离开微型液滴的过程中对微型液滴3造成不必要的影响。本文档来自技高网...

【技术保护点】
一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于,包括以下步骤:1)准备透明导电玻璃作为基材;2)在透明导电玻璃基材的导电面上制备介电层;3)在介电层表面施加微型液滴阵列;4)搭接直流电源,将透明导电玻璃的导电面接入电压的负极端,并将插入微型液滴的铜丝电极接入电压的正极端,闭合电源开关对微型液滴施加电压;5)在电润湿作用力的驱动下,增大所施加的直流电压将会减小微型液滴的表观接触角,进而增大微型液滴的曲率半径,因此对不同的微型液滴施加不同的直流电压获得不同的曲率半径;6)断开直流电压电源,抬起铜丝电极,采用紫外灯箱辐照使电场辅助形变的微型液滴阵列固化,进而获得具有变数值孔径的固态微透镜阵列。

【技术特征摘要】
1.一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于,包括以下步骤: 1)准备透明导电玻璃作为基材; 2)在透明导电玻璃基材的导电面上制备介电层; 3)在介电层表面施加微型液滴阵列; 4)搭接直流电源,将透明导电玻璃的导电面接入电压的负极端,并将插入微型液滴的铜丝电极接入电压的正极端,闭合电源开关对微型液滴施加电压; 5)在电润湿作用力的驱动下,增大所施加的直流电压将会减小微型液滴的表观接触角,进而增大微型液滴的曲率半径,因此对不同的微型液滴施加不同的直流电压获得不同的曲率半径; 6)断开直流电压电源,抬起铜丝电极,采用紫外灯箱辐照使电场辅助形变的微型液滴阵列固化,进而获得具有变数值孔径的固态微透镜阵列。2.根据权利要求1所述的一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于:所述的基材采用ITO (氧化铟锡)、FTO (含氟氧化锡)或AZO (氧化铝锌)的镀膜玻3? ο3.根据权利要求1所述的一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于:所述的介电层为透明薄膜,是无机材料的薄膜,或是聚合物薄膜,无机材料的薄膜为二氧化硅薄膜、氧化铝陶瓷薄膜或钛酸钡陶瓷薄膜;聚合物薄膜为PMMA(聚甲基丙烯酸甲酯)、SU-8负性光刻胶、PVDF (聚偏氟乙烯)、环氧树脂的聚合物或NOA系列(光学粘结剂)、纳米压印胶的紫外固化聚合物等固化后的薄膜。4.根据权利要求1所述的一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于:所述的介电层为采用旋涂或蒸镀法制备的光滑表面,或是采用纳米压印的方法所制备的微纳米织构化的粗糙表面。5.根据权利要求1所述的一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于:所述的用于制备微透镜阵列的微型液滴的材料为液态的PMMA、SU-8、环氧树脂、NOA系列或纳米压印胶。6.根据权利要求1所述的一种数值孔径可控的微透镜阵列的电辅助制造方法,其特征在于:所述的微型液滴的施加方式采用喷墨打印或数字微量进给器。7.根...

【专利技术属性】
技术研发人员:邵金友李祥明田洪淼黎相孟胡鸿姜承宝
申请(专利权)人:西安交通大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1