一种油污干扰下的硅钢板表面缺陷图像检测方法,包括:采用面阵工业相机采集硅钢板表面缺陷图像;采用视觉显著方法对采集的硅钢板表面缺陷图像进行缺陷检测;采用基于显著线扫描形态学的检测方法对油污缺陷图像进行定位检测;本发明专利技术将硅钢板被油污干扰物所覆盖的情况从缺陷检测中排除,这些伪缺陷干扰增加了目标检测与识别的难度。解决了缺陷检测时的杂乱背景问题、覆盖的油污干扰问题以及反光的伪缺陷干扰问题;本发明专利技术对信息欠缺的二值图像进行了线扫描填充操作,该操作能够有效的获得油污干扰区域;本发明专利技术运用了形态学理论的边缘处理方法去除油污边缘和反光伪缺陷边缘,避免了相减操作不能够有效消除伪边缘的问题。
【技术实现步骤摘要】
一种油污干扰下的硅钢板表面缺陷图像检测方法
本专利技术属于机器视觉和无损检测
,具体涉及一种油污干扰下的硅钢板表面缺陷图像检测方法。
技术介绍
在金属板材中,硅钢板作为高端钢铁产品,其制造技术和产品质量已成为衡量一个国家特殊钢生产和科技发展水平的重要标志之一。硅钢板又称矽钢板,是一种含碳极低的硅铁软磁合金,一般含硅量0.5~4.5%。主要用来制作各种发电机、电动机和变压器的铁芯,同时硅钢板也是电子、电力和军事工业中不可或缺的重要软磁性合金材料。由于硅钢板与一国的电能消耗量密切相关,并且生产工艺复杂,制造技术严格,大部分国外企业都将硅钢板的生产技术以专利形式加以保护,视为企业的生命。高品质硅钢板材的生产离不开有效的检测手段,严格的产品质量检测是控制生产流程、改善工艺设备和提高产品质量的可靠保障。研制和应用硅钢板表面缺陷检测系统,实现硅钢板表面缺陷自动化的在线检测,对企业质量控制和生产决策具有重要的作用。冷轧硅钢板生产线与热轧板生产线环境相比,尽管没有了高温和水汽等干扰因素,然而粉尘、噪声和油污等干扰因素的存在使得表面缺陷成像的质量大打折扣。而且,干扰因素的存在时常导致缺陷的目标信息被干扰物覆盖,甚至被完全淹没。随着降噪设备、高性能传感器等设备的不断发展更新,图像的采集问题已初步被解决。然而,目前在获得的缺陷图像中仍然可能会出现目标信息被干扰物所覆盖,例如在硅钢板表面图像中会出现缺陷目标被油污所覆盖的情况,这些伪缺陷干扰增加了目标检测与识别的难度。而从图像处理和目标识别的角度解决该问题,需要解决杂乱背景的问题、覆盖的油污干扰问题以及反光的伪缺陷干扰问题。因此,有必要开发一个适合的检测方法能够实现油污干扰下硅钢板表面缺陷的准确检测。
技术实现思路
针对现有技术存在的问题,本专利技术提供一种油污干扰下的硅钢板表面缺陷图像检测方法。本专利技术的技术方案是:一种油污干扰下的硅钢板表面缺陷图像检测方法,包括如下步骤:步骤1、采用面阵工业相机采集硅钢板表面缺陷图像;步骤2、采用视觉显著方法对采集的硅钢板表面缺陷图像进行缺陷检测;步骤2-1、使用5×5高斯滤波窗口对采集的硅钢板表面缺陷图像进行滤波处理;步骤2-2、将步骤2-1滤波后的硅钢板表面缺陷图像和未滤波的硅钢板表面缺陷图像进行颜色空间转换,即从RGB颜色空间转换到Lab颜色空间;步骤2-3、在Lab颜色空间下,分别计算未滤波的硅钢板表面缺陷图像的平均向量即每个像素点对应的Lab值的平均值构成的矩阵Iμ(x,y),滤波后的硅钢板表面缺陷图像的平均向量If(x,y);步骤2-4、根据Iμ(x,y)和If(x,y)计算得到硅钢板表面缺陷图像的显著值S(x,y),并根据显著值绘制显著图;S(x,y)=||Iμ(x,y)-If(x,y)||(1)步骤2-5、计算显著图中的平均灰度,判断该平均灰度是否大于初始设置的阈值,是,则当前硅钢板表面缺陷图像为油污缺陷图像,执行步骤3,否则返回步骤1;步骤3、采用基于显著线扫描形态学的检测方法对油污缺陷图像进行定位检测;步骤3-1、使用基于形态学的开闭滤波方法对步骤2-4中得到的显著图进行滤波处理;所述基于形态学的开闭滤波方法采用交替顺序的开-闭滤波,即用一系列不断增大的结构元素来执行开-闭滤波,直到结构元素尺寸与设定的结构元素尺寸上限相同为止。步骤3-2、对步骤3-1中滤波后的图像进行归一化处理,并使用全局二值化方法获得二值图像;步骤3-3、对步骤3-2中得到的二值图像进行线扫描填充操作获得线扫描结果二值图像,并提取该图像边缘得到油污干扰区域;所述线扫描填充操作包括水平方向线扫描填充和竖直方向线扫描填充,具体如下:首先对于二值图像矩阵的每一行,先寻找该行中的所有0值,然后将第一个0值和最后一个0值中间的所有值设置为0值,进而得到一个新的二值图像,即水平方向线扫描二值图像;再对于水平方向线扫描图像的每一列,先寻找该列中的所有0值,然后将第一个0值和最后一个0值中间的所有值设置为0值,进而得到竖直方向线扫描二值图像,即最终的线扫描结果二值图像,提取该图像边缘得到油污干扰区域图像;所述步骤3-3利用Canny算子提取线扫描结果二值图像边缘得到油污干扰区域。步骤3-4、对步骤3-3中得到的油污干扰区域图像使用形态学理论的边缘处理方法去除油污干扰区域边缘和反光伪缺陷边缘,获得去除油污干扰的硅钢板表面缺陷图像。步骤3-4-1:对得到的油污干扰区域图像执行膨胀操作,得到膨胀边缘图像;步骤3-4-2:将膨胀操作后的图像与滤波后边缘提取得到的图像进行逻辑“或”运算,得到新的膨胀边缘图像;步骤3-4-3:将逻辑“或”运算前后的两幅膨胀边缘图像执行图像相减消除边缘操作,得到最终的油污干扰区域图像;步骤3-4-4:对最终的油污干扰区域图像执行膨胀操作,并将其显示在硅钢板表面缺陷图像上。有益效果:1)将硅钢板被油污干扰物所覆盖的情况从缺陷检测中排除,这些伪缺陷干扰增加了目标检测与识别的难度。解决了缺陷检测时的杂乱背景问题、覆盖的油污干扰问题以及反光的伪缺陷干扰问题;2)本专利技术对信息欠缺的二值图像进行了线扫描填充操作,该操作能够有效的获得油污干扰区域;3)本专利技术运用了形态学理论的边缘处理方法去除油污边缘和反光伪缺陷边缘,避免了相减操作不能够有效消除伪边缘的问题。附图说明图1为本专利技术具体实施方式的油污干扰下的硅钢板表面缺陷检测方法流程图;图2为本专利技术具体实施方式的硅钢板表面缺陷图像变化过程示意图;图3为本专利技术具体实施方式的擦裂缺陷图像及其实验结果;其中,(a)擦裂缺陷图像;(b)形态学梯度方法的实验结果;(c)Canny算子的实验结果;(d)本方法的实验结果;图4为本专利技术具体实施方式的划伤缺陷图像及其实验结果;其中,(a)划伤缺陷图像;(b)形态学梯度方法的实验结果;(c)Canny算子的实验结果;(d)本方法的实验结果;图5为本专利技术具体实施方式的小缺陷图像及其实验结果;其中,(a)小缺陷图像;(b)形态学梯度方法的实验结果;(c)Canny算子的实验结果;(d)本方法的实验结果。具体实施方式下面结合附图对本专利技术的具体实施方式做详细说明。一种油污干扰下的硅钢板表面缺陷图像检测方法,如图1所示,包括如下步骤:步骤1、采用面阵工业相机采集硅钢板表面缺陷图像;步骤2、采用视觉显著方法对采集的硅钢板表面缺陷图像进行缺陷检测;步骤2-1、使用5×5高斯滤波窗口对采集的硅钢板表面缺陷图像进行滤波处理;步骤2-2、将步骤2-l滤波后的硅钢板表面缺陷图像和未滤波的硅钢板表面缺陷图像进行颜色空间转换,即从RGB颜色空间转换到Lab颜色空间;步骤2-3、在Lab颜色空间下,分别计算未滤波的硅钢板表面缺陷图像的平均向量即每个像素点对应的Lab值的平均值构成的矩阵Iμ(x,y),滤波后的硅钢板表面缺陷图像的平均向量If(x,y);步骤2-4、根据Iμ(x,y)和If(x,y)计算得到硅钢板表面缺陷图像的显著值S(x,y),并根据显著值绘制显著图;S(x,y)=||Iμ(x,y)-If(x,y)||(1)步骤2-5、计算显著图中的平均灰度,判断该平均灰度是否大于初始设置的阈值200,是,则当前硅钢板表面缺陷图像为油污缺陷图像,执行步骤3,否则返回步骤1;步骤3、采用基于显著线扫描形态本文档来自技高网...
【技术保护点】
一种油污干扰下的硅钢板表面缺陷图像检测方法,其特征在于:包括如下步骤:步骤1、采用面阵工业相机采集硅钢板表面缺陷图像;步骤2、采用视觉显著方法对采集的硅钢板表面缺陷图像进行缺陷检测;步骤2‑1、使用5×5高斯滤波窗口对采集的硅钢板表面缺陷图像进行滤波处理;步骤2‑2、将步骤2‑1滤波后的硅钢板表面缺陷图像和未滤波的硅钢板表面缺陷图像进行颜色空间转换,即从RGB颜色空间转换到Lab颜色空间;步骤2‑3、在Lab颜色空间下,分别计算未滤波的硅钢板表面缺陷图像的平均向量即每个像素点对应的Lab值的平均值构成的矩阵Iμ(x,y),滤波后的硅钢板表面缺陷图像的平均向量If(x,y);步骤2‑4、根据Iμ(x,y)和If(x,y)计算得到硅钢板表面缺陷图像的显著值S(x,y),并根据显著值绘制显著图;S(x,y)=||Iμ(x,y)‑If(x,y)|| (1)步骤2‑5、计算显著图中的平均灰度,判断该平均灰度是否大于初始设置的阈值,是,则当前硅钢板表面缺陷图像为油污缺陷图像,执行步骤3,否则返回步骤1;步骤3、采用基于显著线扫描形态学的检测方法对油污缺陷图像进行定位检测;步骤3‑1、使用基于形态学的开闭滤波方法对步骤2‑4中得到的显著图进行滤波处理;步骤3‑2、对步骤3‑1中滤波后的图像进行归一化处理,并使用全局二值化方法获得二值图像;步骤3‑3、对步骤3‑2中得到的二值图像进行线扫描填充操作获得线扫描结果二值图像,并提取该图像边缘得到油污干扰区域;所述线扫描填充操作包括水平方向线扫描填充和竖直方向线扫描填充,具体如下:首先对于二值图像矩阵的每一行,先寻找该行中的所有0值,然后将第一个0值和最后一个0值中间的所有值设置为0值,进而得到一个新的二值图像,即水平方向线扫描二值图像;再对于水平方向线扫描图像的每一列,先寻找该列中的所有0值,然后将第一个0值和最后一个0值中间的所有值设置为0值,进而得到竖直方向线扫描二值图像,即最终的线扫描结果二值图像,提取该图像边缘得到油污干扰区域图像;步骤3‑4、对步骤3‑3中得到的油污干扰区域图像使用形态学理论的边缘处理方法去除油污干扰区域边缘和反光伪缺陷边缘,获得去除油污干扰的硅钢板表面缺陷图像。...
【技术特征摘要】
1.一种油污干扰下的硅钢板表面缺陷图像检测方法,包括如下步骤:步骤1、采用面阵工业相机采集硅钢板表面缺陷图像;步骤2、采用视觉显著方法对采集的硅钢板表面缺陷图像进行缺陷检测;步骤2-1、使用5×5高斯滤波窗口对采集的硅钢板表面缺陷图像进行滤波处理;步骤2-2、将步骤2-1滤波后的硅钢板表面缺陷图像和未滤波的硅钢板表面缺陷图像进行颜色空间转换,即从RGB颜色空间转换到Lab颜色空间;步骤2-3、在Lab颜色空间下,分别计算未滤波的硅钢板表面缺陷图像的平均向量即每个像素点对应的Lab值的平均值构成的矩阵Iμ(x,y),滤波后的硅钢板表面缺陷图像的平均向量If(x,y);步骤2-4、根据Iμ(x,y)和If(x,y)计算得到硅钢板表面缺陷图像的显著值S(x,y),并根据显著值绘制显著图;S(x,y)=||Iμ(x,y)-If(x,y)||(1)步骤2-5、计算显著图中的平均灰度,判断该平均灰度是否大于初始设置的阈值,是,则当前硅钢板表面缺陷图像为油污缺陷图像,执行步骤3,否则返回步骤1;步骤3、采用基于显著线扫描形态学的检测方法对油污缺陷图像进行定位检测;步骤3-1、使用基于形态学的开闭滤波方法对步骤2-4中得到的显著图进行滤波处理;步骤3-2、对步骤3-1中滤波后的图像进行归一化处理,并使用全局二值化方法获得二值...
【专利技术属性】
技术研发人员:宋克臣,颜云辉,董志鹏,温馨,赵永杰,
申请(专利权)人:东北大学,
类型:发明
国别省市:辽宁;21
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。