一种大功率电加热管式预热器制造技术

技术编号:10938359 阅读:171 留言:0更新日期:2015-01-21 18:51
本发明专利技术公开了一种大功率电加热管式预热器,所述预热器包括:3N个预热器加热管道、1台感应调压器、3台大电流变压器,所述感应调压器与所述大电流变压器连接,所述大电流变压器与所述预热器加热管道连接,其中,所述3N个预热器加热管道呈圆周等间距分布且两两平行,实现了在不增加绝缘法兰的情况下起到了良好的绝缘效果,取消了绝缘法兰,减少了热工回路的潜在漏水、漏电点,将连接至管道的供电极数量减少了一半,不仅降低了线路损耗,还为热工回路的布置节省了材料和空间,保障了大功率管式预热器加热的效率和安全性,并具有良好的经济效益和技术效果。

【技术实现步骤摘要】
一种大功率电加热管式预热器
本专利技术涉及预热管设计研究领域,尤其涉及一种大功率电加热管式预热器。
技术介绍
管式预热器在化工、石油以及热工试验装置中广泛使用,特别是热工试验装置的重要组成部分。电加热方式的大功率管式预热器额定功率一般有数百千瓦甚至上兆瓦、额定电流高达几千甚至上万安培,功率越大则衍生的问题越多,处理难度越大。传统的大功率管式电加热预热器主要存在以下问题:1.绝缘问题。传统的大功率管式电加热预热器需要在预热器管道与回路的非加热管道之间安装绝缘法兰进行绝缘。对高温高压回路来说,管道内充有温度达数百摄氏度、压力达十几兆帕的液体介质,在这种条件下绝缘法兰的绝缘性能容易失效,所以增加绝缘法兰不但不能彻底解决预热器管道漏电的问题,还增加了回路的潜在漏水点。 2.供电极连接至管道的数量过多。传统的大功率管式电加热预热器与加热管道之间需要连接6个供电极,供电极的数量多;大功率管式电加热预热器的输出电流大,所以要求单个供电极的输电截面积非常大,供电极数量多则意味着耗铜材的量大、线路损耗大、占用空间大。 综上所述,本申请专利技术人在实现本申请实施例专利技术技术方案的过程中,发现上述技术至少存在如下技术问题:在现有技术中,由于传统的大功率管式电加热预热器需要在预热器管道与回路的非加热管道之间安装绝缘法兰进行绝缘,且采用了较多的供电极连接数量,所以,现有技术中的管式预热器存在绝缘效果较差,回路存在潜在漏水点,且供电极连接至管道的数量过多,导致耗铜材的量大、线路损耗大、占用空间大的技术问题。
技术实现思路
本专利技术提供了一种大功率电加热管式预热器,解决了现有技术中的管式预热器存在绝缘效果较差,回路存在潜在漏水点,且供电极连接至管道的数量过多,导致耗铜材的量大、线路损耗大、占用空间大的技术问题,实现了在不设置绝缘法兰的情况下起到了良好的绝缘效果,取消了绝缘法兰,减少了热工回路的潜在漏水、漏电点,将连接至管道的供电极数量减少了 1/2,不仅降低了线路损耗,还为热工回路的布置节省了材料和空间,保障了大功率管式预热器加热的效率和安全性,并具有良好的经济效益和技术效果。 为解决上述技术问题,本申请实施例提供了一种大功率电加热管式预热器,所述预热器包括:3N个预热器加热管道、1台感应调压器、3台大电流变压器,所述感应调压器与所述大电流变压器连接,所述大电流变压器与所述预热器加热管道连接,其中,所述3N个预热器加热管道呈圆周等间距分布且两两平行,所述N为大于等于1的正整数。 其中,所述3N个预热器加热管道长度相等,且所述3N个预热器加热管道两端均分别采用弯管半径相同的管道和管道连箱将所述3N个预热器加热管道在入口和出口处连接起来。 其中,所述3N个预热器加热管道中心位置均焊接有高电势铜接线板,其中,当N=1时,单独的一个预热器加热管道为一组;当N=2时,相邻的2个预热器加热管道为同一组;当N=3时,相邻的3个预热器加热管道为同一组,以此类推,且所述同一组的高电势铜接线板并接成一个高电势铜接线总板,使预热器加热管道的高电势铜接线总板数量为3个。 其中,所述1台感应调压器与所述3台大电流变压器配合使用构成所述预热器的大电流供电电源。 其中,将所述感应调压器的3个输出接线端子分别接至所述3台大电流变压器的输入端,将所述3台大电流变压器输出端的低电势点短接起来,使所述3台大电流变压器的进线端构成三角形连接,出线端构成星形连接。 其中,将所述3台大电流变压器的高电势输出端分别接至所述3N个预热器加热管道的所述高电势铜接线总板。 其中,所述预热器还包括:断路器、接触器,所述断路器与所述接触器连接,且所述断路器和所述接触器连接在电网和所述感应调压器之间。 本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点: 由于采用了将预热器设计为包括:3N个预热器加热管道、1台感应调压器、3台大电流变压器,所述感应调压器与所述大电流变压器连接,所述大电流变压器与所述预热器加热管道连接,其中,所述3N个预热器加热管道呈圆周等间距分布且两两平行布置,所述预热器加热管道的高电势铜接线板均匀分组,每组高电势铜接线板并联在一起,最终并联组成3个高电势铜接线总板,即,利用了交流电A相、B相、C相之间相位互差120°,在三相供电平衡的条件下汇集点电压矢量集成为零的原理,在位于预热器3N段加热管道中心的3个高电势铜接线总板上分别加上3路相位差为120°的电源,并分别短接3N段加热管道的两端,从而在加热管道的两端形成两个自然“零电位点”,实现电气绝缘,所以,有效解决了现有技术中的管式预热器存在绝缘效果较差,回路存在潜在漏水点,且供电极连接至管道的数量过多,导致耗铜材的量大、线路损耗大、占用空间大的技术问题,进而实现了在不增加绝缘法兰的情况下起到了良好的绝缘效果,取消了绝缘法兰,减少了热工回路的潜在漏水、漏电点,将连接至管道的供电极数量减少了一半,不仅降低了线路损耗,还为热工回路的布置节省了材料和空间,保障了大功率管式预热器加热的效率和安全性,并具有良好的经济效益和技术效果。 【附图说明】 图1是本申请实施例中大功率电加热管式预热器系统示意图;图2是本申请实施例中大功率电加热管式预热器的供电示意图;图3是本申请实施例中大功率电加热管式预热器结构示意图。 【具体实施方式】 本专利技术提供了一种大功率电加热管式预热器,解决了现有技术中的管式预热器存在绝缘效果较差,回路存在潜在漏水点,且供电极连接至管道的数量过多,导致耗铜材的量大、线路损耗大、占用空间大的技术问题,实现了在不设置绝缘法兰的情况下起到了良好的绝缘效果,取消了绝缘法兰,减少了热工回路的潜在漏水、漏电点,将连接至管道的供电极数量减少了一半,不仅降低了线路损耗,还为热工回路的布置节省了材料和空间,保障了大功率管式预热器加热的效率和安全性,并具有良好的经济效益和技术效果。 本申请实施中的技术方案为解决上述技术问题。总体思路如下:采用了将预热器设计为包括:3N个预热器加热管道、1台感应调压器、3台大电流变压器,所述感应调压器与所述大电流变压器连接,所述大电流变压器与所述预热器加热管道连接,其中,所述3N个预热器加热管道呈圆周等间距分布且两两平行布置,所述预热器加热管道的高电势铜接线板均匀分组,每组高电势铜接线板并联在一起,最终并联组成3个高电势铜接线总板,即,利用了交流电A相、B相、C相之间相位互差120°,在三相供电平衡的条件下汇集点电压矢量集成为零的原理,在位于预热器3N段加热管道中心的3个高电势铜接线总板上分别加上3路相位差为120°的电源,并分别短接3N段加热管道的两端,从而在加热管道的两端形成两个自然“零电位点”,实现电气绝缘,所以,有效解决了现有技术中的管式预热器存在绝缘效果较差,回路存在潜在漏水点,且供电极连接至管道的数量过多,导致耗铜材的量大、线路损耗大、占用空间大的技术问题,进而实现了在不增加绝缘法兰的情况下起到了良好的绝缘效果,取消了绝缘法兰,减少了热工回路的潜在漏水、漏电点,将连接至管道的供电极数量减少了一半,不仅降低了线路损耗,还为热工回路的布置节省了材料和空间,保障了大功率管式预热器加热的效率和安全性,并具有良好的经济效益本文档来自技高网...

【技术保护点】
一种大功率电加热管式预热器,其特征在于,所述预热器包括:3N个预热器加热管道、1台感应调压器、3台大电流变压器,所述感应调压器与所述大电流变压器连接,所述大电流变压器与所述预热器加热管道连接,其中,所述3N个预热器加热管道呈圆周等间距分布且两两平行,所述N为大于等于1的正整数,所述N为所述预热器加热管道被均分为3组后每组预热器加热管道的数量。

【技术特征摘要】
1.一种大功率电加热管式预热器,其特征在于,所述预热器包括: 3N个预热器加热管道、I台感应调压器、3台大电流变压器,所述感应调压器与所述大电流变压器连接,所述大电流变压器与所述预热器加热管道连接,其中,所述3N个预热器加热管道呈圆周等间距分布且两两平行,所述N为大于等于I的正整数,所述N为所述预热器加热管道被均分为3组后每组预热器加热管道的数量。2.根据权利要求1所述的预热器,其特征在于,所述3N个预热器加热管道长度相等,且所述3N个预热器加热管道两端均分别采用弯管半径相同的管道和管道连箱将所述3N个预热器加热管道在入口和出口处连接起来。3.根据权利要求1所述的预热器,其特征在于,所述3N个预热器加热管道中心位置均焊接有高电势铜接线板,其中,当N=I时,单独的一个预热器加热管道为一组;当#2时,相邻的2个预热器加热管道为同一组;当N=3时,相邻的3个预热器加热管...

【专利技术属性】
技术研发人员:韩群霞郎雪梅张君毅罗峰谢世杰王广义
申请(专利权)人:中国核动力研究设计院
类型:发明
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1