【技术实现步骤摘要】
电力电缆寿命估计的方法及系统
本专利技术涉及电力电缆
,特别是涉及一种电力电缆寿命估计的方法及系统。
技术介绍
随着电网建设的持续发展,电力电缆作为输送电能的重要设备,其在实际使用过程中,通常会因绝缘老化引发事故而给电网带来安全隐患。因此,需要对在役电缆进行寿命估计,为线路维护及运行策略的制订提供依据。目前,通常采用温松弛电流法、差示扫描热量法及经验公式法等方法来估计电力电缆的寿命并得到寿命估计结果,并且,上述电力电缆寿命估计方法多为基于电力电缆在线检测的寿命估计。然而,这样的估计方法可能会使参与寿命估计的电力电缆产生记忆效应,而该记忆效应会在电力电缆运行过程中使其承受过电压,使得电力电缆在参与寿命估计后的使用过程中极易受到损伤,导致该电力电缆的实际寿命小于上述寿命估计结果,此时,如果仍以上述寿命估计结果为依据来进行线路维护和制定运行策略,比如依据上述寿命估计结果推导出电力电缆能支撑到九月,进而做好九月对该电力电缆进行维护或更换的安排与准备,但是由于该电力电缆的实际寿命小于上述寿命估计结果,使得该电力电缆在不到九月就不能进行正常的传输工作,导致突然断电影响用户正常的生活,甚至发生漏电等危险情况,显然,上述寿命估计结果已不再适应于当下的电力电缆,降低了上述寿命估计结果的实用性,从而降低了电网的安全性。
技术实现思路
有鉴于此,本专利技术提供了一种电力电缆寿命估计的方法及系统,以达到提高电力电缆的寿命估计结果的实用性,从而提高电网安全性的目的。为解决上述技术问题,本专利技术提供一种电力电缆寿命估计的方法,包括:获取电缆待测样本在N个类型环境下对应的N个电缆训 ...
【技术保护点】
一种电力电缆寿命估计的方法,其特征在于,包括:获取电缆待测样本在N个类型环境下对应的N个电缆训练样本的相关信息;其中,所述电缆训练样本的相关信息至少包括:所述电缆待测样本的出厂设计年限t,真实服役时间treal和每个所述电缆训练样本相对应的环境参数wi,i=1,2,3,…,N,所述环境参数wi=[wi1,wi2,wi3,…,wim]T,m为所述环境参数中所包含的参数个数;根据出厂设计年限t和真实服役时间treal计算得到相对服役时间t*,其中,t*=treal/t;对每个所述电缆训练样本依据预设绝缘状态指标进行检测,对获取到的检测数据进行预处理,得到预处理后的检测数据li;其中,所述预处理后的检测数据li=[li1,li2,li3,…,lin]T,n为所述预设绝缘状态指标所包含的指标个数;建立电缆寿命估计的神经网络模型,并以N个所述电缆训练样本所对应的环境参数wi和预处理后的检测数据li为输入,N个所述电缆训练样本所属的所述电缆待测样本的相对服役时间t*为输出,训练所述神经网络模型得到电缆寿命估计模型;利用所述电缆寿命估计模型对所述电缆待测样本进行寿命估计,得到所述电缆待测样本的寿命估 ...
【技术特征摘要】
1.一种电力电缆寿命估计的方法,其特征在于,包括:获取电缆待测样本在N个类型环境下对应的N个电缆训练样本的相关信息;其中,所述电缆训练样本的相关信息至少包括:所述电缆待测样本的出厂设计年限t,真实服役时间treal和每个所述电缆训练样本相对应的环境参数wi,i=1,2,3,…,N,所述环境参数wi=[wi1,wi2,wi3,…,wim]T,m为所述环境参数中所包含的参数个数;根据出厂设计年限t和真实服役时间treal计算得到相对服役时间t*,其中,t*=treal/t;对每个所述电缆训练样本依据预设绝缘状态指标进行检测,对获取到的检测数据进行预处理,得到预处理后的检测数据li;其中,所述预处理后的检测数据li=[li1,li2,li3,…,lin]T,n为所述预设绝缘状态指标所包含的指标个数;建立电缆寿命估计的神经网络模型,并以N个所述电缆训练样本所对应的环境参数wi和预处理后的检测数据li为输入,N个所述电缆训练样本所属的所述电缆待测样本的相对服役时间t*为输出,训练所述神经网络模型得到电缆寿命估计模型;利用所述电缆寿命估计模型对所述电缆待测样本进行寿命估计,得到所述电缆待测样本的寿命估计结果;其中,建立电缆寿命估计的神经网络模型,并以N个所述电缆训练样本所对应的环境参数wi和预处理后的检测数据li为输入,N个所述电缆训练样本所属的所述电缆待测样本的相对服役时间t*为输出,训练所述神经网络模型得到电缆寿命估计模型,包括:以N个所述电缆训练样本所对应的环境参数wi和预处理后的检测数据li为样本输入xi,N个所述电缆训练样本所属的所述电缆待测样本的相对服役时间t*为样本输出yi,建立训练样本集合其中,所述训练样本集合中,样本输入xi与样本输出yi一一对应;设定所述神经网络模型中的神经元数量第j个神经元和输入节点之间的内权权重列向量ωj和第j个神经元的偏置值列向量bj;其中,依据所述神经元数量第j个神经元和输入节点之间的内权权重列向量ωj和第j个神经元的偏置值列向量bj计算得到神经元矩阵H;其中,G(·)为Sigmodal函数,i=1,2,…,N;依据所述神经元矩阵H计算得到所述神经网络模型中第j个神经元和输出节点之间的外权权重列向量其中H+=(HTH)-1HT为所述神经元矩阵H的Moore-Penrose广义逆,Y=[y1,y2,...,yN]T为所述训练样本集合中的样本输出;依据所述神经元矩阵H和所述外权权重列向量得到电缆寿命估计模型F(·);其中,2.如权利要求1所述的方法,其特征在于,利用所述电缆寿命估计模型对所述电缆待测样本进行寿命估计,得到所述电缆待测样本的寿命估计结果,包括:将所述电缆待测样本的环境参数列向量w和所述预处理后的检测数据l构成的列向量z输入所述电缆寿命估计模型得到所述电缆待测样本的相对服役时间其中,w=[w1,w2,…,wN],l=[l1,l2,…,lN],所述电缆待测样本的相对服役时间依据所述电缆待测样本的相对服役时间和所述设计年限t得到所述电缆待测样本的寿命估计结果tlast;其中,所述电缆待测样本的寿命估计结果3.如权利要求1所述的方法,其特征在于,所述环境参数包括:地表日平均温度,土壤平均湿度,土壤酸碱性,地表日最高温度,地表日最低问题,路面压力和土壤砂质。4.如权利要求1所述的方法,其特征在于,所述预设绝缘状态指标包括:绝缘厚度,微孔杂质,热延伸率,永久延伸率,断裂延伸率和抗张强度。5.如权利要求1所述的方法,其特征在于,所述对获...
【专利技术属性】
技术研发人员:黄宏新,赵明,任广振,罗进圣,许刚,徐祥海,胡伟,杨先进,韩一峰,谈元鹏,徐航,毛炜,黄肖为,洪晓东,娄雨风,池俊锋,姚广元,
申请(专利权)人:国家电网公司,国网浙江省电力公司杭州供电公司,华北电力大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。