一种微小间隙下超导块材磁斥力精确测试仪及其测试方法技术

技术编号:10719413 阅读:194 留言:0更新日期:2014-12-03 20:27
一种微小间隙下超导块材磁斥力精确测试仪及其测试方法。测试仪主要由双驱动机构、永磁体夹头、超导体夹头、液氮杯、光栅位移传感器和S型拉压力传感器构成。本发明专利技术采用双驱动方式、闭环控制系统和高精度传感器实现超导块材的精确定位和磁斥力的精确测量,夹头结构实现了永磁-超导副之间平行度的自适应调节。测试仪实现了1μm测量定位精度和0.1μm测试分辨率,填补了微米间隙范围内超导块材磁斥力测量仪器的空白,可满足磁悬浮轴承中微小间隙运动副/摩擦副设计的测试需求,具有测量精度高、分辨率高、成本适中等优点,值得采用和推广,亦可作为系列化产品用于研究生教学科研。该测试方法具有测量精度高、简便实用、适用范围广等优点。

【技术实现步骤摘要】
一种微小间隙下超导块材磁斥力精确测试仪及其测试方法
本专利技术属于机电测试仪器和摩擦学测试仪器
,具体涉及一种微小间隙下超导块材磁斥力精确测试仪及其测试方法。
技术介绍
高温超导块材因其优良的磁场特性在超导磁斥型轴承、超导磁悬浮列车等系统中具有良好的应用前景。对于这些高温超导系统,对应的磁悬浮运动副/摩擦副的悬浮磁斥力是决定系统稳定运行的关键因素,但长久以来这类先进摩擦副因其无摩擦磨损的优点反而被广大摩擦学研究人员所忽视,其基本参数的测量迟迟未被纳入摩擦学测试领域,相应检测仪器的国家标准完善工作也处于滞后发展状态。根据已检索的相关专利及非专利文献报道,国内关于超导块材悬浮磁斥力的测量最新标准是GB/T21115-2007(块状氧化物超导体悬浮力的测量)。该试验标准和现有的一些检测设备(如由西南交通大学研制的超导磁斥力测试仪器的定位精度在0.1mm,结构设计原因导致最小测试间隙为4mm。)全部面向于毫米至厘米级的运动副/摩擦副间隙范围,定位和测量精度较差,只能测试得到大间隙范围下的悬浮磁斥力。研究人员在对超导磁斥型轴承性能和应用进行深入研究时,迫切需要解决用于该类微小间隙(微米级)运动副/摩擦副设计所需的悬浮磁斥力测试难题,现有最新的测试标准和仪器远远不能满足此类微米级间隙范围的测量需求,极大限制了高温超导材料的应用研究。
技术实现思路
本专利技术的目的在于提供一种微小间隙下超导块材磁斥力精确测试仪及其测试方法,能够实现微小间隙下的超导块材磁斥力精确测量,从而解决现有技术中超导块材磁斥力测试仪器不能满足超导磁斥型轴承所需的微米级间隙范围精确测量要求的问题。为达到上述目的,本专利技术采用的技术方案为:一种微小间隙下超导块材磁斥力精确测试仪,包括由支撑杆、上底板和下底板组成的支架;上底板的上侧固定有双驱动机构,上底板的下侧固定有升降机构,升降机构的底部固定有永磁体夹头,永磁体夹头内放置有永磁体,双驱动机构控制升降机构带动永磁体夹头上下移动;下底板的上方设有S型拉压力传感器,S型拉压力传感器的上方固定有液氮杯,且液氮杯位于永磁体夹头的下方,液氮杯内设有超导体夹头,超导体夹头内放置有待测的超导块材,液氮杯的外侧竖直地固定有光栅位移传感器;且双驱动机构、升降机构、永磁体夹头、超导体夹头和S型拉压力传感器同轴设置。所述的双驱动机构包括固定在上底板上的伺服电机,以及设置在伺服电机上的微调螺母;伺服电机和微调螺母能够单独控制升降机构运动,从而控制永磁体夹头的位置。还包括控制系统,控制系统包括与光栅位移传感器和S型拉压力传感器相连的DSP采集控制器、与伺服电机相连的伺服驱动器、以及与DSP采集控制器和伺服驱动器相连的计算机。所述的升降机构包括固定在上底板上的螺套,螺套内设有滚珠丝杠,滚珠丝杠和螺套通过中间螺纹套配合连接,永磁体夹头固定在中间螺纹套的底部,双驱动机构控制中间螺纹套向下旋出螺套或向上旋入螺套,从而控制永磁体夹头的位置。所述的光栅位移传感器通过位移传感器上支撑杆和位移传感器下支撑杆固定在液氮杯侧面,且位移传感器上支撑杆固定在螺套的底部,位移传感器下支撑杆固定在液氮杯的底部。所述的永磁体夹头包括固定在升降机构上的紧固件,紧固件的外部以螺纹连接的方式固定有夹头螺母,夹头螺母的底部开设有用于取放永磁体的通孔,紧固件内开设有用于放置永磁体的空腔,空腔的顶部设有圆头定位螺钉,空腔的侧壁内套装有能够上下移动的垫环,夹头螺母能够控制垫环在空腔内的相对位置,空腔内还设有碟形弹簧,垫环压迫碟形弹簧产生变形,使得碟形弹簧的内圈直径变小,从而夹紧永磁体。所述的超导体夹头包括固定在液氮杯上的紧固件,紧固件的外部以螺纹连接的方式固定有夹头螺母,夹头螺母的顶部开设有用于取放超导块材的通孔,紧固件内开设有用于放置超导块材的空腔,空腔的底部设有圆头定位螺钉,空腔的侧壁内套装有能够上下移动的垫环,夹头螺母能够控制垫环在空腔内的相对位置,空腔内还设有碟形弹簧,垫环压迫碟形弹簧产生变形,使得碟形弹簧的内圈直径变小,从而夹紧超导块材。所述的液氮杯包括杯体和设置在杯体上的液氮杯盖板,其中杯体包括液氮杯外胆和液氮杯内胆,液氮杯外胆和液氮杯内胆采用绝磁材料OCr18Ni9Ti制备,且在液氮杯外胆和液氮杯内胆之间设有绝热石棉层。所述的下底板上设有垫块,S型拉压力传感器通过拉压力传感器下连杆固定在垫块上方,液氮杯通过拉压力传感器上连杆固定在S型拉压力传感器上方。微小间隙下超导块材磁斥力精确测试仪的测试方法,包括以下步骤:1)通电后将永磁体放入永磁体夹头的空腔内,旋转永磁体夹头的夹头螺母,使永磁体夹头内的垫环压迫碟形弹簧产生变形,碟形弹簧内圈直径变小,夹紧永磁体;2)将待测试的超导块材放入超导体夹头的空腔内,然后开启伺服电机或调节微调螺母,使中间螺纹套带动永磁体夹头下移,直至永磁体和超导块材相接触,依据光栅位移传感器的测量信号判明接触状态,从而保证测试开始时永磁-超导副的平行度,然后旋转超导体夹头的夹头螺母,固定好超导块材,再使中间螺纹套带动永磁体夹头上移至一定高度;3)向液氮杯中注入液氮,使液氮面高于超导块材上表面,待超导块材冷却后,开启伺服电机或调节微调螺母,使中间螺纹套带动永磁体夹头下移,直至永磁体和超导块材的间隙达到预定的测量值,下移过程中光栅位移传感器和S型拉压力传感器不断地将测量信号反馈至计算机,由计算机进行数据分析处理,得到超导块材的磁斥力与间隙的关系曲线,完成对超导块材的测试。相对于现有技术,本专利技术具有以下有益效果:本专利技术提供的微小间隙下超导块材磁斥力精确测试仪,主要由双驱动机构、永磁体夹头、超导体夹头、液氮杯、光栅位移传感器、S型拉压力传感器、支架等构成。在该测试仪中为解决微小间隙下超导块材精确定位以及微小间隙磁斥力精确测量这两个关键问题,采用了双驱动方式控制永磁体定位和高精度的传感器(光栅位移传感器用于测量永磁体和超导块材的间隙、S型拉压力传感器用于测量超导块材磁斥力)来实现超导块材的精确定位和磁斥力的精确测量,使测量精度大大提高,既可满足一般的精度不高的测试需求,也可实现微小间隙(100微米以下)下的超导块材磁斥力精确测量。本专利技术填补了国内微米间隙范围内超导块材磁斥力测量仪器的空白,可以满足磁悬浮轴承中微小间隙运动副/摩擦副设计的测试需求,具有测量精度高、分辨率高、行程大、结构简单合理、成本适中、安全可靠等优点,值得采用和推广,亦可作为系列化产品用于研究生教学科研,具有很高的学术价值和工程价值以及良好的应用前景。进一步的,本专利技术中为面向不同的定位测量需求,采用的双驱动机构为微调螺母结合伺服电机的方式,以驱动升降装置实现对永磁体夹头的快速、精确定位,具有大行程快速定位、小间隙精确定位的优点。当测试精度要求不高时,用微调螺母驱动滚珠丝杠实现定位;当需进行高精度微小间隙的测量时,由与控制系统相连的伺服电机驱动滚珠丝杠实现精确定位。控制系统的反馈信号来自光栅位移传感器和S型压力传感器的测量信号,控制系统采用闭环反馈控制方式,光栅位移传感器、S型压力传感器的测量信号作为反馈信号输入计算机,计算机控制伺服驱动器,从而驱动伺服电机调整滚珠丝杆的位置,进而保证永磁体与超导块材的间隙达到设定的间隙定位要求。本专利技术中双驱动机构、控制系统、光栅位移传感器和S本文档来自技高网...
一种微小间隙下超导块材磁斥力精确测试仪及其测试方法

【技术保护点】
一种微小间隙下超导块材磁斥力精确测试仪,其特征在于:包括由支撑杆(2)、上底板(8)和下底板(1)组成的支架;上底板(8)的上侧固定有双驱动机构,上底板(8)的下侧固定有升降机构,升降机构的底部固定有永磁体夹头(16),永磁体夹头(16)内放置有永磁体,双驱动机构控制升降机构带动永磁体夹头(16)上下移动;下底板(1)的上方设有S型拉压力传感器(20),S型拉压力传感器(20)的上方固定有液氮杯(19),且液氮杯(19)位于永磁体夹头(16)的下方,液氮杯(19)内设有超导体夹头(18),超导体夹头(18)内放置有待测的超导块材,液氮杯(19)的外侧竖直地固定有光栅位移传感器(17);且双驱动机构、升降机构、永磁体夹头(16)、超导体夹头(18)和S型拉压力传感器(20)同轴设置。

【技术特征摘要】
1.一种微小间隙下超导块材磁斥力精确测试仪,其特征在于:包括由支撑杆(2)、上底板(8)和下底板(1)组成的支架;上底板(8)的上侧固定有双驱动机构,上底板(8)的下侧固定有升降机构,升降机构的底部固定有永磁体夹头(16),永磁体夹头(16)内放置有永磁体,双驱动机构控制升降机构带动永磁体夹头(16)上下移动;下底板(1)的上方设有S型拉压力传感器(20),S型拉压力传感器(20)的上方固定有液氮杯(19),且液氮杯(19)位于永磁体夹头(16)的下方,液氮杯(19)内设有超导体夹头(18),超导体夹头(18)内放置有待测的超导块材,液氮杯(19)的外侧竖直地固定有光栅位移传感器(17);且双驱动机构、升降机构、永磁体夹头(16)、超导体夹头(18)和S型拉压力传感器(20)同轴设置;所述的双驱动机构包括固定在上底板(8)上的伺服电机(11),以及设置在伺服电机(11)上的微调螺母(10);伺服电机(11)和微调螺母(10)能够单独控制升降机构运动,从而控制永磁体夹头(16)的位置;所述的微小间隙下超导块材磁斥力精确测试仪还包括控制系统,控制系统包括与光栅位移传感器(17)和S型拉压力传感器(20)相连的DSP采集控制器(30)、与伺服电机(11)相连的伺服驱动器(29)、以及与DSP采集控制器(30)和伺服驱动器(29)相连的计算机(28);所述的升降机构包括固定在上底板(8)上的螺套(12),螺套(12)内设有滚珠丝杠(14),滚珠丝杠(14)和螺套(12)通过中间螺纹套(13)配合连接,永磁体夹头(16)固定在中间螺纹套(13)的底部,双驱动机构控制中间螺纹套(13)向下旋出螺套(12)或向上旋入螺套(12),从而控制永磁体夹头(16)的位置;所述的永磁体夹头(16)包括固定在升降机构上的紧固件(15),紧固件(15)的外部以螺纹连接的方式固定有夹头螺母(31),夹头螺母(31)的底部开设有用于取放永磁体的通孔,紧固件(15)内开设有用于放置永磁体的空腔,空腔的顶部设有圆头定位螺钉(21),空腔的侧壁内套装有能够上下移动的垫环(23),夹头螺母(31)能够控制垫环(23)在空腔内的相对位置,空腔内还设有碟形弹簧(22),垫环(23)压迫碟形弹簧(22)产生变形,使得碟形弹簧(22)的内圈直径变小,从而夹紧永磁体;所述的超导体夹头(18)包括固定在液氮杯(19)上的紧固件(15),紧固件(15)的外部以螺纹连接的方式固定有夹头螺母(31),夹头螺母(31)的顶部开设有用于取放超导块材的通孔,紧固件(15)内开设有用于放置超导块材的空腔,空腔的底部设有圆头定位螺钉(2...

【专利技术属性】
技术研发人员:袁小阳许吉敏丁德甫侯洁洁吴九汇
申请(专利权)人:西安交通大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1