本发明专利技术提供了一种图像去雾方法,所述方法包括:计算待处理的有雾图像的大气光成分;采用快速漂移模式搜索方法将所述有雾图像进行图像分割处理,获得若干分割图像区域;根据所述大气光成分以利用暗原色先验去雾方法而对每个所述分割图像区域分别进行去雾处理,获得去雾后的图像。本发明专利技术提供的图像去雾方法,先利用快速漂移模式搜索方法将有雾图像分割为若干分割图像区域,然后对每个分割图像区域分别利用暗原色先验去雾方法进行去雾处理,这样获得的去雾图像避免了在边缘处产生明显的光晕效应的缺陷,得到的去雾图像清晰、不失真。本发明专利技术还提供了一种图像去雾系统。
【技术实现步骤摘要】
【专利摘要】本专利技术提供了一种图像去雾方法,所述方法包括:计算待处理的有雾图像的大气光成分;采用快速漂移模式搜索方法将所述有雾图像进行图像分割处理,获得若干分割图像区域;根据所述大气光成分以利用暗原色先验去雾方法而对每个所述分割图像区域分别进行去雾处理,获得去雾后的图像。本专利技术提供的图像去雾方法,先利用快速漂移模式搜索方法将有雾图像分割为若干分割图像区域,然后对每个分割图像区域分别利用暗原色先验去雾方法进行去雾处理,这样获得的去雾图像避免了在边缘处产生明显的光晕效应的缺陷,得到的去雾图像清晰、不失真。本专利技术还提供了一种图像去雾系统。【专利说明】图像去雾方法和系统
本专利技术涉及图像处理
,特别是涉及一种图像去雾方法和系统。
技术介绍
在有雾气候下,由于大气中水滴等粒子较多,随着物体到成像设备距离的增大,大气粒子的散射作用对成像的影响逐渐增加,这种影响主要由两个散射过程造成:第一,物体表面的反射光在到达成像设备的过程中,由于大气粒子的散射而发生衰减;第二,自然光因大气粒子的散射而进人成像设备参与成像。它们的共同作用导致采集的图像对比度、饱和度低及色调偏移,不仅影响图像的视觉效果,而且影响图像分析和理解的性能。 由于大气粒子对户外图像采集造成了比较严重的影响,致使室外视频系统无法正常工作,对地形勘探、视频监控等户外作业带来了一定的不便,特别是对交通运输业有着十分恶劣的影响,可能造成交通事故的发生和运输速度的降低。因此对于雾天各种监测系统获取的图像上景物影像的清晰化方法的研究具有重大的现实意义。 近年来,随着计算机软硬件技术的不断发展,对有雾天气下拍摄图像的景物影像进行去雾处理已经成为可能,这反过来又对去雾图像的清晰度和真实感提出了新的要求。图像去雾技术在视频监控、地形勘测、自动驾驶、城市交通等相关的领域都有着广泛的运用,改善了大雾天气对图像拍摄造成的发白、模糊、对比度低等问题。 目前对图像进行去雾处理主要采用暗原色先验去雾方法来实现,该方法是通过对大量的无雾图像观察得到的统计规律而获得的。暗原色先验去雾方法简洁有效,对各种类型的含雾图像都能达到一定程度的去雾效果。然而,暗原色先验去雾方法并不能直接作用于整幅自然图像,由于在自然图像中场景深度通常会在景物的边缘处发生突变,导致采用暗原色先验去雾方法进行去雾处理后,在边缘处会产生明显的光晕效应。
技术实现思路
基于此,有必要针对目前采用暗原色先验去雾方法对整幅自然图像进行去雾处理会在边缘处产生明显的光晕效应的问题,提供一种图像去雾方法和系统。 一种图像去雾方法,所述方法包括: 计算待处理的有雾图像的大气光成分; 采用快速漂移模式搜索方法将所述有雾图像进行图像分割处理,获得若干分割图像区域; 根据所述大气光成分以利用暗原色先验去雾方法而对每个所述分割图像区域分别进行去雾处理,获得去雾后的图像。 一种图像去雾系统,所述系统包括: 大气光成分计算模块,用于计算待处理的有雾图像的大气光成分; 图像分割模块,用于采用快速漂移模式搜索方法将所述有雾图像进行图像分割处理,获得若干分割图像区域; 分割图像区域去雾处理模块,用于根据所述大气光成分以利用暗原色先验去雾系统而对每个所述分割图像区域分别进行去雾处理,获得去雾后的图像。 上述图像去雾方法和系统,先利用快速漂移模式搜索方法将有雾图像分割为若干分割图像区域,然后对每个分割图像区域分别利用暗原色先验去雾方法进行去雾处理,这样获得的去雾图像避免了在边缘处产生明显的光晕效应的缺陷,得到的去雾图像清晰、不失真。 【专利附图】【附图说明】 图1为一个实施例中图像去雾方法的流程示意图; 图2为一个实施例中计算待处理的有雾图像的大气光成分的步骤的流程示意图; 图3为一个实施例中根据大气光成分以利用暗原色先验去雾方法而对每个分割图像区域分别进行去雾处理,获得去雾后的图像的步骤的流程示意图; 图4为采用传统的直接利用暗原色先验去雾方法和采用本专利技术一个实施例中的图像去雾方法进行去雾的效果对比图; 图5为一个实施例中图像去雾系统的结构框图; 图6为一个实施例中图5中的图像分割模块的结构框图; 图7为一个实施例中图5中的分割图像区域去雾处理模块的结构框图。 【具体实施方式】 为了使本专利技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本专利技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利技术,并不用于限定本专利技术。 这里先对暗原色先验去雾方法的原理进行说明。在计算机视觉和计算机图形中,有雾图像可用公式(I)表示: I(x) = J(x) t (X)+A公式(I) 其中,X代表某一像素;I (x)指的是输入的有雾图像被观测到的图像强度,表示有雾图像;J(X)指的是在没有雾的条件下景物的光线强度,表示去雾后的图像;A是外界大气光成分,可按常数向量处理;t(x)指的是光线通过媒质透射到照相机的过程中没有被散射的部分,也就是传播参量。去雾的目标就是从图像I中恢复出J(x)、A和t(x)。 暗原色先验去雾方法所依据的统计事实是,在绝大多数非天空的局部区域里,某一些像素总会有至少一个颜色通道具有很低的值,换言之,该区域光强度的最小值趋近于零。对于I幅图像D(X),定义该图像D(X)的暗原色图像,用公式(2)表示为 D1 ; (X)= min ( min Dc (y)公式⑵\., c<E{R,G,B\yyeQ(x) v jJ 其中X表示图像中D(X)中像素的位置;c代表颜色通道,这里颜色通道采用RGB(红绿蓝)三通道,在其他实施例中也可以采用其他形式的颜色通道,护则表示图像D(x)的c颜色通道的通道图像;Ω (X)是以X为中心的一块预设大小的方形区域;y是在通道图像De中的方形区域Ω (χ)中的像素的位置。通过对大量无雾图像的统计得出,对于无雾的图像,除了天空的区域,Ddark(X)的强度总是很低并且趋于零,这也是暗原色得名的原因。 然而,对于有雾图像I (X),由于附加的外界大气光,图像被雾干扰之后往往要比其本身亮度更大,传播参量t(x) —般较小,所以被浓雾覆盖的图像的暗原色具有较高的强度值。视觉上看来,暗原色强度值是雾浓度的粗略近似,利用有雾图像和无雾图像的这一点差另IJ,就可以将有雾图像进行去雾处理,并获得很好的去雾效果。 暗原色先验去雾方法,基于如下2个假设:假设在局部小范围内图像的传传播参量t(x)以及图像的暗原色信息都在该区域内是一致的;假设大气光成分A是常数向量。根据公式(I),对该式两边同时除以大气光成分A,并同时求暗原色可得: ( Ic(y)) ?(χ) = 1- min min——公式(3) V , c^J 公式(3)中kc表示大气光成分A在c颜色通道的分量;Ie(y)表示有雾图像I (X)在其方形区域Ω (χ)中的c颜色通道的像素值。而在实际场景中,即便是完全无雾的天气,大气中总会包含一些杂质分子,所以当看远处的物体时,雾气其实依然存在,且雾的存在是人眼感知图像层次的一个基本线索,因此如果彻底地去除存在的雾气,会使图像看起来很不真实,为了使图像看起来更真实自然,在公式(3)中引入容雾参数本文档来自技高网...
【技术保护点】
一种图像去雾方法,所述方法包括:计算待处理的有雾图像的大气光成分;采用快速漂移模式搜索方法将所述有雾图像进行图像分割处理,获得若干分割图像区域;根据所述大气光成分以利用暗原色先验去雾方法而对每个所述分割图像区域分别进行去雾处理,获得去雾后的图像。
【技术特征摘要】
【专利技术属性】
技术研发人员:朱青松,吴迪,王磊,
申请(专利权)人:中国科学院深圳先进技术研究院,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。