【技术实现步骤摘要】
一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法
本专利技术属于电力系统智能电网优化
,具体涉及一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法。
技术介绍
人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。现今能够用来研究人工智能的主要物质基础以及能够实现人工智能技术平台的机器就是计算机,人工智能的发展历史是和计算机科学技术的发展史联系在一起的。除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。多智能体系统是多个智能体组成的集合,它的目标是将大而复杂的系统建设成小的、彼此互相通信和协调的,易于管理的系统。它的研究涉及智能体的知识、目标、技能、规划以及如何使智能体采取协调行动解决问题等。研究者主要研究智能体之间的交互通信、协调合作、冲突消解等方面,强调多个智能体之间的紧密群体合作,而非个体能力的自治和发挥,主要说明如何分析、设计和集成多个智能体构成相互协作的系统。人类智能的本质是一种社会性智能,人类绝大部分活动都涉及多个人 ...
【技术保护点】
一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法,其特征在于,包括以下步骤:1)根据RBF神经网络对光伏电源和负荷功率的预测结果,求取电源和负荷功率的匹配度,结合匹配度判断是否达到优化重构触发条件;2)若判断结果是未达到重构触发条件,返回步骤1)进行下一次判断;3)匹配度达到优化重构触发条件,由协调Agent分配新的管理Agent,此新的管理Agent的优化计算模块执行多智能体和粒子群引导的最短路径算法进行静态重构;4)管理Agent的解集准备模块进行解集准备,并将备选解集上报协调Agent的最优解确定模块;5)最优解确定模块确定本次重构的最优解;6)返回步骤1)进行下一次优化重构触发判断;所述的多智能体由协调Agent、管理Agent和粒子Agent构成;所述的协调Agent是整个优化重构的调度中心,由重构执行判断模块、管理代理交互模块和最优解确定模块组成;所述的管理Agent由优化计算模块、解集准备模块、前驱代理交互模块和协调代理交互模块组成。
【技术特征摘要】
1.一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法,其特征在于,包括以下步骤:1)根据RBF神经网络对光伏电源和负荷功率的预测结果,求取电源和负荷功率的匹配度,结合匹配度判断是否达到优化重构触发条件;2)若判断结果是未达到重构触发条件,返回步骤1)进行下一次判断;3)匹配度达到优化重构触发条件,由协调Agent分配新的管理Agent,此新的管理Agent的优化计算模块执行多智能体和粒子群引导的最短路径算法进行静态重构;4)管理Agent的解集准备模块进行解集准备,并将备选解集上报协调Agent的最优解确定模块;5)最优解确定模块确定本次重构的最优解;6)返回步骤1)进行下一次优化重构触发判断;所述的多智能体由协调Agent、管理Agent和粒子Agent构成;所述的协调Agent是整个优化重构的调度中心,由重构执行判断模块、管理代理交互模块和最优解确定模块组成;所述的管理Agent由优化计算模块、解集准备模块、前驱代理交互模块和协调代理交互模块组成。2.根据权利要求1所述的一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法,其特征在于,所述的步骤1)包括以下几个步骤:步骤1、RBF神经网络功率预测:使用RBF神经网络预测含光伏微源主动配电网中的负荷总功率和分布式光伏电源总功率,计算分布式光伏电源总功率和负荷总功率的比值,这个比值代表分布式电源发电和负荷用电的匹配度;步骤2、判断匹配度是否达到重构条件:根据求得的匹配度,与上次重构对应的匹配度进行比较,若是第一次重构,则将第一次重构的匹配度与1进行比较,根据两次匹配度的差值的绝对值判断是否达到预先设定的阈值;步骤3、重构消息发送:若判断结果是两次匹配度的差值的绝对值未超过阈值,忽略本次重构请求并进行下一次判断,若判断结果是达到阈值,重构执行判断模块分配一个新的管理Agent并由此管理Agent执行一次新的重构。3.根据权利要求2所述的一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法,其特征在于所述的RBF神经网络的隐含层基函数是高斯核函数:式中,X=[x1,x2,...,xn]为n维输入向量;cj为第j个基函数的中心,j=1,2,...,p;σj为第j个神经元的标准化常数,即高斯基函数的方差;n、p分别为输入层和隐含层的神经元的个数;RBF神经网络输入输出之间的关系表达式为:式中,m为输出层神经元的个数;yi为输出层第i个神经元的输出值,i=1,2,...,m;wj,i为隐含层第j个神经元和输出层第i个神经元之间的连接权值。4.根据权利要求1所述的一种基于多智能体协同寻优的含光伏微源主动配网拓扑重构方法,其特征在于,所述的步骤3)由优化计算模块负责,优化计算模块采用多智能体和粒子群引导的最短路径算法进行静态重构,每个管理Agent的优化计算模块负责一个粒子Agent群体,粒子Agent的生存环境为一个环形网格,网格规模为LSIZE×LSIZE,LSIZE为大于1的整数,粒子Agent在网格中的位置由其所在的行列号确定,在智能体网格的空间中第i行第j列的粒子Agent为Lij,每个粒子Agent代表粒子群算法中的一个粒子,粒子的位置由位置向量表示,位置向量的维数就是电网闭合所有联络开关对应的结构所包含的总边数,位置向量的各个维度的数值代表电网结构各个边的权值;步骤3)具体包括以下几个步骤:步骤1、初始化智能体网格:闭合所有优化的电网结构的所有联络开关,前驱代理交互模块获取上次优化重构的最优解的对应的初始电网结构并将其作为第一个粒子Agent的初始结构,随机初始化剩余LSIZE×LSIZE-1个粒子Agent所有边的权值;步骤2、Dijkstra算法生成每个粒子Agent的最短路径:对于每个粒子Agent通过最短路径算法中的Dijkstra算法生成到电网电源点路径最短的拓扑结构,Dijkstra算法的具体步骤如下:2.1)将电网的连接大电网的电源点作为起点vs,在运算过程中,每一步都给一个新的点vj进行标号,标号分为两部分,其中标号中的第二个数值表示从起点vs到该点的最短距离P(vj),第一个数值表示从起点到该点的最短路线上的前一个点,用λ(vj)表示从vs到vj的最短路线上vj的前一个点的下标,用Si表示进行到第i步时,已经被标号的点的集合;2.2)给起点vs标号(0,0),并令S0={vs},标号中的第二个数值P(vs)=0,表示从起点到该点的最短距离为0;起点标号中的第一个数值设为0;寻找从vs发出的所有边,求出这些边的权与P(vs)之和的最小值,即:其中j为从起点vs发出的所有边的终点的下标,对以上最小值所对应的点进行标号,并确定S1;2.3)继续探寻从已标号的点出发、终点为未标号点的边,求出已标号点的P值与相应边的权之和,对其中最小值所对应的点进行标号,并确定S2;2.4)继续以上步骤,直到找不到从已标号点出发、终点为未标号点的边时,就得到了从起点vs到各个点的最短距离;步骤3、潮流计算:对于步骤2得到的LSIZE×LSIZE个配电网拓扑进行潮流计算,潮流计算均采用电力系统中的牛顿拉夫逊潮流计算方法,在潮流计算中,将分布式电源作为负的负荷,当成PQ节点来处理;步骤4、计算每个...
【专利技术属性】
技术研发人员:杨强,董如良,颜文俊,包哲静,
申请(专利权)人:浙江大学,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。