一种基于高光谱数据识别赤铁矿化的方法技术

技术编号:10316105 阅读:265 留言:0更新日期:2014-08-13 17:33
本发明专利技术属于一种赤铁矿化识别方法,具体公开一种基于高光谱数据识别赤铁矿化的方法,该方法包括如下步骤:步骤(1)获取高光谱影像数据和预处理;步骤(2)高光谱影像数据特征波段选择;步骤(3)高光谱数据特征波段图像端元提取;步骤(4)建立光谱特征识别规则区分识别赤铁矿化和褐铁矿化端元;步骤(5)利用混合协调匹配滤波对赤铁矿化和褐铁矿化端元进行填图。本发明专利技术的方法能够识别赤铁矿化和褐铁矿化,识别的精度高,矿物的检出限低。

【技术实现步骤摘要】

本专利技术属于一种赤铁矿化识别方法,具体涉及。
技术介绍
赤铁矿化又称为红色蚀变,是寻找中、低温热液铀矿床的特殊标志之一,在其他中、低温铜、金矿床中也常有发现,是重要的成矿要素。因此,如何准确识别和提取与成矿密切相关的赤铁矿化分布,对圈定成矿靶区具有重要的现实意义。当前,在遥感蚀变信息提取领域,对铁染信息的提取已开展多年,发展已较为成熟,但鲜有见到进一步对铁染信息进行区分进而识别出赤铁矿化的案例。由于提取铁染信息中同时包含的褐铁矿化,多为其他矿物风化形成,实际找矿意义并不大,影响了遥感信息的实用价值。因此,遥感图像上提取出的铁染信息中究竟有多少是真正与成矿作用密切相关的,成为遥感地质工作者需要进一步探究的问题。目前对铁染信息的提取多采用多光谱TM、中光谱分辨率Aster数据等,方法归纳主要有以下几种:(1)波段运算法,如波段比值;(2)统计分析法,如主成分分析法、独立成分分析法等;(3)综合法,如将波段比值和主成分分析法相结合。波段运算法通过波段加减组合、比值运算能够增强不同地物之间的差异,但是由于铁化信息的光谱特征较宽缓,特征波长位置较不明确,难以构建准确的运算法则;统计分析法通过数学变换将图像数据进行集中和压缩,将信息集中到少数几个互不相关的新变量中,但是这些新变量不像原始变量含义那么清楚、确切,带有一定的模糊性;综合法尽管将两者进行结合,但是算法中的不确定性仍然存在,并且在运算过程中容易引入其他噪声。总之,这些方法的共同缺陷是:物理意义不明确,且容易引入噪声,最根本的缺陷是难以准确区分识别赤铁矿化和褐铁矿化,因此,有必要开发赤铁矿化识别的新方法。
技术实现思路
本专利技术的目的在于提供,该方法能够识别赤铁矿化和褐铁矿化,识别的精度高,矿物的检出限低。实现本专利技术目的的技术方案:,该方法包括如下步骤:步骤(I)获取高光谱影像数据和预处理;步骤(2)高光谱影像数据特征波段选择;步骤(3)高光谱数据特征波段图像端元提取;步骤(4)建立光谱特征识别规则区分识别赤铁矿化和褐铁矿化端元;步骤(5)利用混合协调匹配滤波对赤铁矿化和褐铁矿化端元进行填图。所述的步骤(I)中对高光谱影像数据进行预处理包括辐射校正、几何校正、影像裁剪、图像掩膜,并对高光谱影像数据进行大气校正和光谱重建,得到高光谱数据的反射率光谱数据。所述的步骤(2)中采用光谱重采样方法对高光谱数据进行特征波段选择,截取可见光-近红外光谱区间波段作为特征波段。所述的步骤(3)中对上述步骤(2)中得到的高光谱数据特征波段进行最小噪声分离变换、多维空间旋转、聚类,初步圈定高光谱数据特征波段图像中的端元。所述的步骤(4)中根据赤铁矿化和褐铁矿化的高光谱数据特征波段区间上的光谱特征差异,建立两者的区分规则,依据规则区分识别赤铁矿化和褐铁矿化端元。所述的步骤(5)中对述步骤(4)中对识别出的赤铁矿化和褐铁矿化端元进行混合协调匹配滤波处理,分别得到赤铁矿化和褐铁矿化的匹配结果灰度图和不可行性灰度图,实现图像识别填图。本专利技术的有益技术效果在于。(I)本专利技术充分利用高光谱图像图谱合一的特点,从光谱角度建立赤铁矿化和褐铁矿化的光谱特征区分规则,与传统方法相比,通过高光谱遥感填图技术,把遥感信息提取领域引入铁化信息的识别分类中,提高了识别的精度。(2)针对高光谱数据波段较多、信息量巨大的特点,针对识别和提取的铁化信息光谱特征波段区间,对预处理和光谱重建好的高光谱数据进行特征波段选择,达到降维、优化信息量的目的。(3)通过最小噪声分离变换实现信噪分离;通过观察特征值和相关图像,确定数据的内在维数,有利于进一步在多维空间中进行聚类和圈定各类端元。(4)采用线性混合分解与匹配滤波相结合的方法进行混合调制匹配滤波,综合了匹配滤波不需要其他背景端元光谱的优点和线性混合分解的像元中各端元的含量为正且总和为I的约束条件,因而降低矿物的检出限。【附图说明】图1为本专利技术所提供的一种的基于高光谱数据识别赤铁矿化的方法的流程图。【具体实施方式】下面结合附图和实施例对本专利技术作进一步详细说明。如图1所示,,该方法包括如下步骤:步骤(I)获取高光谱影像数据和预处理利用机载或星载成像光谱仪获取高光谱影像数据,成像光谱仪的光谱范围至少覆盖可见光-近红外波段,如机载Cas1、Hymap、星载Hyperion等传感器,航空飞行或卫星过境时间选择正午或接近正午,天气晴朗无云。利用ENVI软件对高光谱影像数据进行预处理,预处理包括辐射校正、几何校正、影像裁剪、图像掩膜等,并对高光谱影像数据进行大气校正和光谱重建,得到高光谱数据的反射率光谱数据。步骤(2)高光谱影像数据特征波段选择采用光谱重采样方法对高光谱数据进行特征波段选择,截取可见光-近红外光谱区间400-1000nm之间的波段作为特征波段。步骤(3)高光谱数据特征波段图像端元提取对上述步骤(2)中得到的高光谱数据特征波段进行最小噪声分离变换,得到最小噪声分离变换后的各分量;通过观察各分量特征值和相关图像,确定数据的内在维数;将像元投影到在多维空间中旋转、聚类,交互式选择分布于数据云主体的外围或末端的集群,初步圈定高光谱数据特征波段图像中的端元。步骤(4)建立光谱特征识别规则区分识别赤铁矿化和褐铁矿化端元根据赤铁矿化和褐铁矿化的高光谱数据特征波段区间上的光谱特征差异,建立两者的区分规则,依据规则区分识别赤铁矿化和褐铁矿化端元。判别规则依据端元光谱的特征波峰、谷的反射率值和波长位置。获取端元光谱曲线750nm附近处的反射率最大值Rl, IOOOnm附近处的反射率最大值R2 ;获取750-1000nm间反射率最小值R3,设R3的波长位置为λ 3,规则如下:①若R3 < Rl < R2,且λ 3 e (800, 900),判断为赤铁矿化,λ波长单位为纳米;②若R3 < R2 < R1,且λ 3 e (900, 1000),判断为褐铁矿化,λ波长单位为纳米。步骤(5)利用混合协调匹配滤波对赤铁矿化和褐铁矿化端元进行填图对述步骤(4)中对识别出的赤铁矿化和褐铁矿化端元进行混合协调匹配滤波处理,分别得到赤铁矿化和褐铁矿化的匹配结果灰度图和不可行性灰度图。由于和端元最匹配的像元有一个大于背景分布值的较高的匹配滤波值和一个较低的不可行性值,通过建立匹配结果灰度和不可行性灰度的二维散点图,圈出图像上赤铁矿化和褐铁矿化最匹配的像元,实现赤铁矿化和褐铁矿化端元图像识别填图。混合调制匹配滤波采用线性混合分解与匹配滤波相结合的方法。上面结合附图和实施例对本专利技术作了详细说明,但是本专利技术并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本专利技术宗旨的前提下作出各种变化。本专利技术中未作详细描述的内容均可以采用现有技术。本文档来自技高网
...
一种基于高光谱数据识别赤铁矿化的方法

【技术保护点】
一种基于高光谱数据识别赤铁矿化的方法,其特征在于,该方法包括如下步骤:步骤(1)获取高光谱影像数据和预处理;步骤(2)高光谱影像数据特征波段选择;步骤(3)高光谱数据特征波段图像端元提取;步骤(4)建立光谱特征识别规则区分识别赤铁矿化和褐铁矿化端元;步骤(5)利用混合协调匹配滤波对赤铁矿化和褐铁矿化端元进行填图。

【技术特征摘要】
1.一种基于高光谱数据识别赤铁矿化的方法,其特征在于,该方法包括如下步骤: 步骤(I)获取高光谱影像数据和预处理; 步骤(2)高光谱影像数据特征波段选择; 步骤(3)高光谱数据特征波段图像端元提取; 步骤(4)建立光谱特征识别规则区分识别赤铁矿化和褐铁矿化端元; 步骤(5)利用混合协调匹配滤波对赤铁矿化和褐铁矿化端元进行填图。2.根据权利要求1所述的一种,其特征在于基于高光谱数据识别赤铁矿化的方法:所述的步骤(I)中对高光谱影像数据进行预处理包括辐射校正、几何校正、影像裁剪、图像掩膜,并对高光谱影像数据进行大气校正和光谱重建,得到高光谱数据的反射率光谱数据。3.根据权利要求2所述的一种,其特征在于基于高光谱数据识别赤铁矿化的方法:所述的步骤(2)中采用光谱重采样方法对高光谱数据进行特征波段选择,截...

【专利技术属性】
技术研发人员:张川叶发旺刘洪成
申请(专利权)人:核工业北京地质研究院
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1