本发明专利技术提供一种碳包覆硅酸亚铁锂复合正极材料的制备方法,克服了现有制备方法工艺复杂、生产周期长、成本高的缺陷。本发明专利技术首先采用液相法制备得硅酸锂前驱体,再与廉价的三价铁源及碳源混合后一次烧结得到碳包覆硅酸亚铁锂复合正极材料。该方法由液相法合成的硅酸锂具有较高的活性,整个前驱体过程无需气氛保护;碳热还原法中添加的有机物不仅做碳源,并且参与三价铁源的还原过程,使碳的包覆过程和三价铁的还原过程同时进行,有效的简化了工艺流程、缩短了生产周期;同时以廉价的三价铁源为原料,有效降低了生产成本;并且,最终制备得碳包覆硅酸亚铁锂复合正极材料产品一致性高、颗粒分布范围窄,颗粒间团聚现象较少,具有良好的电化学性能。
【技术实现步骤摘要】
一种碳包覆硅酸亚铁锂复合正极材料的制备方法
本专利技术属于新能源材料制备
,涉及锂离子电池正极材料的制备方法,具体为一种碳包覆硅酸亚铁锂复合正极材料的制备方法。
技术介绍
锂离子电池具有电压高,比能量大,循环寿命长等优点,在便携式电子设备领域得到了广泛的应用,并逐步扩展到电动汽车动力电池、储能电池等领域。目前商品化的锂离子电池正极材料如层状钴酸锂、尖晶石型锰酸锂,但两者都存在或价格昂贵、或安全性差、或高温循环性能差等缺陷,难以满足动力电池的要求。与此相比,硅酸亚铁锂作为一种新型锂离子电池正极材料主要有以下几个优点:(1)比容量高,理论比容量为332mAh/g;(2)结构稳定,晶格中的Si-O键键能高,在满充电态和高温下都可以保持结构稳定,不会释放氧气引发安全事故;(3)原料来源广泛,铁、硅元素都是地壳中最丰富的元素,不存在原料短缺的问题;(4)绿色无污染,硅酸亚铁锂不含有任何有毒有害物质,不会对环境造成污染。目前限制硅酸亚铁锂在锂离子电池领域广泛应用的瓶颈主要是该材料的电子电导率低以及锂离子迁移率低,现有解决方案主要有:1)通过离子掺杂增加材料的电子或空穴,提高材料本征离子迁移率;2)减小颗粒尺寸,缩短锂离子扩散距离;3)包覆碳、银等高电导率物质制备复合材料,提高材料电子导电性。其中,掺杂Mn2+、Al3+等离子虽然可以提高材料的导电性,但会牺牲材料的比容量或循环性能;而采用水热法、溶胶凝胶法等方法可以制备纳米级的硅酸亚铁锂材料,但制备工艺较复杂,生产周期长、成本高,难于工业化生产。碳包覆是通过在活性物质颗粒表面包覆一层几个纳米的高电导率的碳层,在不阻碍锂离子脱嵌的情况下提高材料的电子电导率;同时减少活性物质的团聚,细化晶粒以提高材料的比表面积;并且物理隔绝外界的水蒸汽和氧气。因此,碳包覆作为提高硅酸亚铁锂电学性能的有效方法成为了我们研究的重点。
技术实现思路
本专利技术的目的在于提供一种碳包覆硅酸亚铁锂(Li2FeSiO4/C)复合正极材料的制备方法,克服了现有制备方法工艺复杂、生产周期长、成本高的缺陷。本专利技术首先采用液相法制备得到硅酸锂前驱体,再与廉价的三价铁源及碳源混合后一次烧结得到Li2FeSiO4/C复合正极材料。该方法工艺流程简单,制备周期短,成本低,节能环保,适合工业化生产;且制备得到Li2FeSiO4/C复合正极材料一致性高,颗粒分布范围窄,颗粒间团聚现象少,具有良好的电化学性能。本专利技术的技术方案为:一种碳包覆硅酸亚铁锂(Li2FeSiO4/C)复合正极材料的制备方法,其特征在于包括以下步骤:步骤1.按摩尔比Li∶Si=2∶1称取锂源和硅源,分别溶于相应溶剂后混合,控制pH值为9~14、反应5-24小时制备得硅酸锂前驱体;步骤2.将步骤1所得硅酸锂前驱体与三价铁源按摩尔比Li2SiO3∶Fe=1∶1混合,再按硅酸锂前驱体质量的5%~20%的质量加入碳源,最后加入分散剂球磨5~15小时,取出浆料、烘干得前驱体粉末;步骤3.将步骤2所得前驱体粉末于气氛保护下烧结,以2~10℃/min的升温速率升温至550~800℃,并保温5~15h,随炉冷却至室温,得到Li2FeSiO4/C复合正极材料。优选的,所述三价铁源为三氧化二铁、硝酸铁或柠檬酸铁。所述硅源为Si(C2H5O)4或活性SiO2或SiO2。所述锂源为Li2CO3、LiOH、Li2C2O4、CH3COOLi中的一种或一种以上的混合物。所述碳源为蔗糖、葡萄糖、淀粉、聚乙二醇、羟甲基纤维素、乙炔黑中的一种或一种以上的混合物。所述步骤2中的分散剂为去离子水、乙醇、丙酮中的一种或两种的混合物。所述步骤3中气氛保护的保护性气体为N2、Ar、CO2、CO、H2的一种或两种混合。综上所述,本专利技术首先采用液相法合成硅酸锂前驱体;再采用碳热还原法,以廉价的三价铁源为原料,同时完成硅酸亚铁锂的合成与碳包覆过程,制备的碳包覆硅酸亚铁锂(Li2FeSiO4/C)复合正极材料。该方法的优点在于:由液相法合成的硅酸锂具有较高的活性,整个前驱体过程无需气氛保护;碳热还原法中添加的有机物不仅做碳源,并且参与三价铁源的还原过程,使碳的包覆过程和三价铁的还原过程同时进行,有效的简化了工艺流程、缩短了生产周期;同时以廉价的三价铁源为原料,有效降低了生产成本;并且,最终制备得到的碳包覆硅酸亚铁锂(Li2FeSiO4/C)复合正极材料产品一致性高、颗粒分布范围窄,颗粒间团聚现象较少,具有良好的电化学性能。附图说明图1为实施例1制备得Li2FeSiO4/C复合材料的XRD衍射图。图2为实施例1制备得Li2SiO3前驱体的SEM图。图3为实施例1制备得Li2FeSiO4/C复合材料的SEM图。图4为实施例1制备得Li2FeSiO4/C复合材料的粒度分布曲线。图5为实施例1、2、3制备得Li2FeSiO4/C复合材料充放循环性能曲线。具体实施方式下面结合具体实施例与附图对本专利技术做进一步的详细说明,需要说明的是,本专利技术并不局限于该实施例。实施例1:1)首先称取0.02mol的LiOH与0.01mol的Si(C2H5O)4分别溶解在30mL的去离子水和30mL的乙醇中,将Si(C2H5O)4的乙醇溶液缓缓加入到LiOH的水溶液中,于50℃条件下回流10小时得到白色膏体,再将产物置于120℃烘箱中干燥24小时,即得Li2SiO3前驱体;2)在步骤1制备得Li2SiO3前驱体中添加0.005mol的Fe2O3和1.71g蔗糖,置于玛瑙罐中,以乙醇为分散剂,设定转速为400r/min、球磨5小时,取出浆料、用红外灯干燥后过200目筛,即得前驱体粉末;3)将步骤2制备得前驱体粉末放入瓷舟置于管式炉中,以N2为保护气,以3℃/min的升温速率升温至600℃,保温12小时,自然冷却至室温,即得Li2FeSiO4/C复合正极材料。将所得样品经过X射线衍射分析,如图1所示为制备得Li2FeSiO4/C的XRD衍射图谱,从图中可以看出,该样品与标准Li2FeSiO4衍射图谱基本相同,无杂质峰出现。Li2SiO3前驱体和Li2FeSiO4/C的扫描电镜照片显示,如图2、图3所示,Li2SiO3前驱体为类球状颗粒,Li2FeSiO4/C样品颗粒直径约1-2μm、团聚较少。使用激光粒度分布仪测得样品的粒度分布,如图4所示,可以看出材料的中位径(D50)为1.5μm,基本符合高斯分布,粒度分布范围窄。将上述制得的样品与乙炔黑、聚偏氟乙烯(PVDF)按照85:10:5的质量比混合,加入N-甲基吡咯烷酮(NMP)为溶剂制浆,均匀涂覆于铝箔上,干燥裁剪制成正极片。在120℃真空干燥箱干燥24小时,以金属锂片为负极,以1mol/L的LiPF6/乙烯碳酸酯(EC)-二乙基碳酸酯(DEC)(EC:DEC=1:1,体积比)为电解液,在干燥的氩气手套箱中组装成模拟电池,在1.5V-4.7V的电压区间范围进行容量测试,如图5所示,样品在0.2C倍率下首次放电比容量达到140mAh/g,经过50次循环放电容量基本无衰减,显示了良好的电化学性能及较好的循环性能。实施例2:首先称取0.02mol的LiOH与0.01mol的Si(C2H5O)4分别溶解在30mL的去离子水和30mL的乙醇中,将Si(C2H5O)4的乙醇溶液本文档来自技高网...
【技术保护点】
一种碳包覆硅酸亚铁锂复合正极材料的制备方法,其特征在于包括以下步骤:步骤1.按摩尔比Li∶Si=2∶1称取锂源和硅源,分别溶于相应溶剂后混合,控制pH值为9~14、反应5‑24小时制备得硅酸锂前驱体;步骤2.将步骤1所得硅酸锂前驱体与三价铁源按摩尔比Li2SiO3∶Fe=1∶1混合,再按硅酸锂前驱体质量的5%~20%的质量加入碳源,最后加入分散剂球磨5~15小时,取出浆料、烘干得前驱体粉末;步骤3.将步骤2所得前驱体粉末于气氛保护下烧结,以2~10℃/min的升温速率升温至550~800℃,并保温5~15h,随炉冷却至室温,得到Li2FeSiO4/C复合正极材料。
【技术特征摘要】
1.一种碳包覆硅酸亚铁锂复合正极材料的制备方法,其特征在于包括以下步骤:步骤1.按摩尔比Li∶Si=2∶1称取锂源和硅源,分别溶于相应溶剂后混合,其混合顺序为将硅源溶液缓慢加入锂源溶液中,控制pH值为9~14、反应5-24小时制备得硅酸锂前驱体;步骤2.将步骤1所得硅酸锂前驱体与三价铁源按摩尔比Li2SiO3∶Fe=1∶1混合,再按硅酸锂前驱体质量的5%~20%的质量加入碳源,最后加入分散剂球磨5~15小时,取出浆料、烘干得前驱体粉末;步骤3.将步骤2所得前驱体粉末于气氛保护下烧结,以2~10℃/min的升温速...
【专利技术属性】
技术研发人员:刘兴泉,张峥,吴玥,赵红远,刘一町,
申请(专利权)人:电子科技大学,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。