一种照明模块具有至少一个固态照明元件阵列、有用于固态照明元件阵列的强度控制电压输入的可变电阻器和电气连接到可变电阻器的输出的稳压器,所述可变电阻器具有电气连接到固态照明元件阵列的输入的输出,所述稳压器具有连接到固态照明元件阵列的输入的输出。
【技术实现步骤摘要】
【国外来华专利技术】【专利摘要】一种照明模块具有至少一个固态照明元件阵列、有用于固态照明元件阵列的强度控制电压输入的可变电阻器和电气连接到可变电阻器的输出的稳压器,所述可变电阻器具有电气连接到固态照明元件阵列的输入的输出,所述稳压器具有连接到固态照明元件阵列的输入的输出。【专利说明】智能FET电路
技术介绍
固态照明装置在工业应用中有许多用途。已经变得相当普遍是紫外线(UV)照明装置用于涂层(包括油墨、粘合剂、防腐剂等)的固化。和现有汞弧灯装置相比,固态照明装置通常使用更少的电力、成本更少并且可以更容易处置。作为例子,固态照明装置可以由激光二极管或发光二极管(LED)构成。该装置通常具有经设置以提供带有具体分布的光(例如长而细的光区域或更宽而深的光区域)的一个或若干阵列。各个元件存在于阵列中,照明装置可以由若干阵列,或设置成模块的若干阵列构成,其中该照明装置具有若干模块。一般情况下,固态照明装置可以接收来自恒定电压源的电力。允许连续电流调节的电路驱动装置中的固态照明元件。在一些实例中,该电路可以包括作为可变电阻器的一个或更多个场效应晶体管或其他装置。这些装置两端存在可变压降,导致至固态照明元件阵列的可变电压。这些装置的光输出强度取决于驱动它们的电流,因此电流的任何变化引起光输出的变化,这是一个不期望有的特性。当前方法没有考虑可变电阻器的功耗。可变电阻器在电路中工作以连续调节电流。随着正向电压增加,可变电阻器两端的压降增加,功耗也增加。这使电路的效率变低。另外,可变电阻器中的功耗产生热量。可变电阻器的热量管理会需要散热器,或可变电阻器自身必须大而笨重。【专利附图】【附图说明】图1示出用于固态照明装置的驱动电路的现有技术实施例。图2示出用于固态照明装置的驱动电路的实施例。图3示出用于具有稳压器级的固态照明电路的驱动电路的实施例。图4A和4B示出用于固态照明装置的驱动电路的更详细的实施例。【具体实施方式】图1示出用于固态照明装置的驱动电路10的现有实施例。在本实施例中,可变电阻器是场效应晶体管(FET)的形式,其接收强度信号电压。虽然实施例在此将可变电阻器作为FET讨论,但必须注意的是该电路可以采用其他形式的可变电阻器。在本实施例中,固态发光元件(诸如发光二极管(LED)或激光二极管)的至少一个阵列产生光。元件可以被配置为基板上的单个阵列、基板上的多个阵列、连接在一起的若干基板上的单个或多个若干阵列等。在一个实施例中,发光元件阵列可以由PhoseonTechnology公司制造的娃光Matrix?(SLM)构成。可变电阻器驱动电路14接收驱动所需电流到阵列12的强度电压信号16。通常情况下,电源26是恒定电压电源,并且驱动电路14和可变电阻器18提供电流22的连续调节。电流可以沿着反馈路径20返回到可变电阻器。阵列12也接收可变电阻器24的电压。从可变电阻器电压的角度看,该电路是开环系统。这个设计有一些问题。例如,该阵列接收来自由允许连续电流调节的电路驱动的上述恒定电压电源的电力。在任何给定时间,可变电阻器损耗的电力取决于阵列的正向电压、阵列自身和电流。可变电阻器两端的压降等于Vpotot — Vfmrad,其中Vtoari是被驱动阵列的正向电压。随着该差值增加,可变电阻器中的功耗也增加,导致照明装置更低的效率。作为一个实例,可变电阻器电压可以在I到8伏特的范围内变化,这取决于不同发光元件阵列的需求。驱动2安培的电流通过阵列将因而引起2瓦特到16瓦特的功耗变化。这导致照明装置低效率。另外,可变电阻器产生热量。在可变电阻器由FET构成的实施例中,热量管理问题需要大而笨重的FET。该装置还可以采用散热器用于热量管理,并且FET产生的额外热需要比较小的FET所需的散热器更大并更笨重的散热器。与图1的开环电路相反,图2示出一种闭环电路30。在电路30中,类似于图1的电路10,可变电阻器18接收强度电压控制信号16。然后可变电阻器接收它的驱动信号,产生电流22,电流22沿着路径20反馈回来。在本实施例中,来自可变电阻器24的电压不去到阵列12。相反,电压反馈24到达稳压器32。然后,稳压器32输出信号到阵列12和误差放大器42。在本实施例中,可变电阻器采用FET的形式,但是也可以使用其他选择(诸如双极型晶体管、数字电位计或任何电控限流装置)。驱动电路根据使用的可变电阻器将采取不同的形式。使用闭环系统,稳压器32的电压输出保持为大于上述阵列所需电压的约0.5V。该电压允许可变电阻器调整在任何所需水平的阵列电流。与现有方法相比,更低的功耗增加电路的效率,并减少产生的热量。图3示出电路30的更详细实施例,其中稳压器32由降压调整器电路构成。为了便于参考,该图将阵列级40从稳压器32中分离出来。阵列级40包括具有强度控制信号16和电流反馈路径20的可变电阻器驱动器14、可变电阻器18和阵列12。在本实施例中,稳压器32由降压调整器级构成。降压调整器具有误差放大器42、脉冲宽度调制发生器44和功率级或电路46。误差放大器42接收可变电阻器的输出24作为第一输入。该输入可以经由开关和/或延迟48被接收。开关48允许电路接收指示阵列状态的信号。如果发光元件阵列被启用,则开关将可变电阻器的输出24提供给误差放大器42。当阵列没有被启用时,开关48将误差放大器的输入连接到参考电压50。这导致误差放大器仅接收降压功率级的输出。开关48可以包括延迟,其在接收可变电阻器的输出时延迟误差放大器。这允许阵列12中的电流在监视可变电阻器的电压之前上升。这阻止可变电阻器上升高的电压读数(当阵列关闭时,其通常能够为约16V)引起过渡期间降压功率级输出中的急剧下降。脉冲宽度调制发生器44接收误差放大器的输出,并产生降压功率调节器46所用的电流脉冲。降压功率调节器输出针对阵列的输出电压BuckRegulator (降压调整器)V_out。然后该信号到达阵列,作为它的输出电压:Array Voltage (阵列电压)。在图1的现有技术实施例中,电压调节通常发生一次,由技术人员在制造时执行。在此公开的实施例中,从功率级到阵列的电压调节实时发生并贯穿产品的寿命。这意味着电压调节是“智能的”(如标题所指的)。图4A和4B根据实施例示出驱动电路的一种实施方式的实施例。阵列级40具有强度控制电压16、可变电阻器驱动器14、可变电阻器(本例中是FET)和可变电阻器输出电压24。误差放大器42也具有可变电阻器输出电压24和参考电压50。脉冲宽度调制发生器44馈入降压调整器级或电路46。接着,降压调整器电路具有用于阵列34的电压作为其输出。该图中没有示出实际阵列。必须注意一点,根据在此讨论的实施例,图4A和4B的实施方式仅仅呈现一种可能的电路。许多不同的实施方式将提供闭环系统,该闭环系统将可变电阻器两端的电压调节到适当水平以驱动发光元件阵列。该实施方式也应该具有低功耗并产生相对低水平的热量。因此,尽管已经中肯描述了用于闭环可变电阻器驱动电路的方法和设备的具体实施例,但是并不意味着这种具体参考被认为是限制本专利技术的范围,除了下述权利要求记载的这个范围之外。【权利要求】1.一种照明模块,包括: 至少一个固态照明元件阵列; 具有用于所述固态照明元件阵列的强度控制电压输入的可变电阻本文档来自技高网...
【技术保护点】
一种照明模块,包括: 至少一个固态照明元件阵列; 具有用于所述固态照明元件阵列的强度控制电压输入的可变电阻器,所述可变电阻器具有电气连接到所述固态照明元件阵列的输入的输出;和 电气连接到所述可变电阻器的所述输出的稳压器,所述稳压器具有连接到所述固态照明元件阵列的输入的输出。
【技术特征摘要】
【国外来华专利技术】...
【专利技术属性】
技术研发人员:S·巴塔利亚,
申请(专利权)人:佛森技术公司,
类型:发明
国别省市:美国;US
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。