一种地铁隧道表面裂缝的检测方法技术

技术编号:10114207 阅读:397 留言:0更新日期:2014-06-04 18:29
本发明专利技术公开了一种地铁隧道表面裂缝的检测方法,该方法包括:利用高速面阵相机组成的视觉系统,对地铁隧道洞体表面进行高速图像采集;对采集到的图像进行预处理,获得二值化图像;计算所述二值化图像的连通区域,并基于所述连通区域进行多级滤波处理,获得滤除不规则及分布无规律的噪声点的隧道表面图像;根据所述滤除不规则及分布无规律的噪声点的隧道表面图像进行隧道表面裂缝的检测,并在检测到裂缝后对其大小进行计算。通过采用本发明专利技术公开的检测方法,可以有效去除复杂噪声背景,提高了裂缝检测的准确性。

【技术实现步骤摘要】
一种地铁隧道表面裂缝的检测方法
本专利技术涉及轨道交通
,尤其涉及一种地铁隧道表面裂缝的检测方法。
技术介绍
随着国内地铁路线的快速发展,早期建设的地铁隧道基础设施已经进入养护维修期,而新建成的地铁隧道,也会诱发洞体形变并出现裂缝,影响隧道的正常使用,威胁行车安全。如果对地铁隧道洞体出现的裂缝不及时预警,会使隧道基础设施进一步被破坏,一旦发生事故,给生命财产带来巨大损失。目前地铁隧道裂缝检测,主要采用人工静态检查为主、少量动态检测车为辅的方式,主要在晚上线路无运营任务时进行。这种以人工为主的肉眼检测方式检测速度慢、工作效率低、占用线路时间长,不符合现代城市轨道交通发展的需求。随着计算机技术的快速发展,图像处理技术在无损检测中的应用越来越广泛,利用图像处理检测裂缝也受到了人们的关注。这种方法具有非接触,方便快捷,效率高等优点,是一种最有发展潜力的检测方法。目前基于图像处理技术的裂缝检测取得了众多研究成果。总的来说主要有三个研究方向。第一个方向是完全使用传统的图像处理技术来进行检测。第二个方向是改进传统的图像处理技术来进行检测。第三个方向是将其他领域的技术引入图像处理领域或者设计新的图像处理技术。对于传统的裂缝图像,例如混凝土墙面、沥青路面、桥梁等,上述研究已经能够较好地检测出裂缝。而地铁隧道表面裂缝有着很多复杂的情况,例如光照不均匀,噪声种类繁多、分布无规律,背景纹理复杂,裂缝对比度低等,其自动检测技术仍是当前的一个难题。现有技术中,主要利用如下两种方法进行隧道裂缝的检测方法:1)基于图像局部网格特征的隧道衬砌裂缝自动识别算法。该算法通过构造十字形模板进行裂缝的识别,但是该方式只能适用于理想的裂缝图像;如果裂缝图像的背景纹理非常复杂,比如隧道表面的裂缝图像,那么裂缝网格和背景网格的灰度剖面图十分复杂,难以进行有效的识别。并且,该方法通过识别完裂缝种子后,需要对裂缝进行连接,但是裂缝种子点的连接存在着缺陷,连接算法要求背景十分理想;如果存在块状的噪声或者噪声与裂缝连接甚至覆盖了裂缝,那么就可能将噪声包含在内,从而造成裂缝连接的失败,进而对于长度、走向、宽度的计算都将出现误差。另外,该方法利用卷积后寻找极值点的方法计算裂缝的宽度也存在着缺陷,这种计算方法要求背景不能存在噪声,如果存在大量散点噪声,则灰度剖面图中将存在大量极值点,造成无法计算宽度的问题。2)隧道衬砌裂缝的远距离图像测量技术。该方法提取裂缝的过程同样只适用于理想背景的情况下,如果背景中存在大面积且形状不规则的噪声,或者噪声与裂缝连接在一起,那么该方法无法去除这些噪声;因此该算法不适用隧道表面的裂缝图像检测。另外,该方法计算裂缝宽度采用最小距离法有很大的局限。首先,对于有噪声干扰的裂缝图像,边缘的准确提取非常困难。其次,对于图像来说,需要首先在像素域计算裂缝的宽度,而后根据相机参数换算到实际宽度。而对于细小的裂缝,以像素点表示的两个裂缝边缘间隔非常小,采用最小距离法会存在很大的误差。
技术实现思路
本专利技术的目的是提供一种地铁隧道表面裂缝的检测方法,可以有效去除复杂噪声背景,提高了裂缝检测的准确性。本专利技术的目的是通过以下技术方案实现的:一种地铁隧道表面裂缝的检测方法,该方法包括:利用高速面阵相机组成的视觉系统,对地铁隧道洞体表面进行高速图像采集;对采集到的图像进行预处理,获得二值化图像;计算所述二值化图像的连通区域,并基于所述连通区域进行多级滤波处理,获得滤除不规则及分布无规律的噪声点的隧道表面图像;根据所述滤除不规则及分布无规律的噪声点的隧道表面图像进行隧道表面裂缝的检测,并在检测到裂缝后对其大小进行计算。由上述本专利技术提供的技术方案可以看出,基于连通区域的多级滤波算法能够较好地处理复杂的地铁隧道表面裂缝图像,对于大量的、不规则的、分布无规律的噪声能够有效地进行滤除,提高了裂缝检测的准确性;并且,对于海量的隧道图像可进行裂缝的自动检测和识别,代替了人工肉眼,可高效率的完成繁重的检测工作。附图说明为了更清楚地说明本专利技术实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。图1为本专利技术实施例一提供的一种地铁隧道表面裂缝的检测方法的流程图;图2为本专利技术实施例二提供的一种地铁隧道表面裂缝的检测方法的流程图;图3为本专利技术实施例二提供的一种特殊噪声的示意图;图4为本专利技术实施例二提供的一种端点检测的示意图;图5为本专利技术实施例二提供的一种计算裂缝点法线的示意图;图6为本专利技术实施例二提供的一种裂缝宽度计算规则的示意图。具体实施方式下面结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术的保护范围。实施例一图1为本专利技术实施例一提供的一种地铁隧道表面裂缝的检测方法的示意图。如图1所示,该方法主要包括如下步骤:步骤11、利用高速面阵相机组成的视觉系统,对地铁隧道洞体表面进行高速图像采集。本专利技术实施例中,采用安装在轨道车或电客车上的视觉系统,并配合强光照片来采集高质量的地铁隧道洞体表面图像。步骤12、对采集到的图像进行预处理,获得二值化图像。本专利技术实施例中,对采集到的图像进行灰度级腐蚀处理,获得对比度增强后的灰度图像;然后,对所述灰度图像进行局部直方图拉伸处理及局部Otsu(大津算法)分割处理,进而获得隧道表面的二值化图像。步骤13、计算所述二值化图像的连通区域,并基于所述连通区域进行多级滤波处理,获得滤除不规则及分布无规律的噪声点的隧道表面图像。本专利技术实施例所述的基于连通区域进行多级滤波处理主要包括:基于连通区域的零阶矩滤波处理、基于连通区域矩形度滤波处理及特殊噪声滤波处理。步骤14、根据所述滤除不规则及分布无规律的噪声点的隧道表面图像进行隧道表面裂缝的检测,并在检测到裂缝后对其大小进行计算。基于上述步骤11-13处理后,可根据滤除不规则及分布无规律的噪声点的隧道表面图像进行隧道裂缝的检测与识别;若检测到裂缝,则对该裂缝的宽度进行计算,主要包括如下步骤:对所述裂缝图像进行细化,获得裂缝的骨架图;对所述骨架图中的毛刺进行滤除,获得滤除毛刺后的裂缝骨架图;基于所述滤除毛刺后的裂缝骨架图进行裂缝宽度的计算。本专利技术实施例基于连通区域的多级滤波算法能够较好地处理复杂的地铁隧道表面裂缝图像,对于大量的、不规则的、分布无规律的噪声能够有效地进行滤除,提高了裂缝检测的准确性;并且,对于海量的隧道图像可进行裂缝的自动检测和识别,代替了人工肉眼,可高效率的完成繁重的检测工作。实施例二为了便于理解本专利技术,下面结合附图2-6对本专利技术做进一步说明。如图2所示,本专利技术实施例提供的一种地铁隧道表面裂缝的检测方法,主要包括如下1-4个步骤:1、隧道图像高速采集。本专利技术实施例中,利用高速面阵相机组成的视觉系统,对地铁隧道洞体表面进行高速图像采集。视觉系统可以安装于轨道车或电客车上,实现快速移动式的图像采集,并配合强光照明得到高质量的隧道图像。2、隧道图像本文档来自技高网
...
一种地铁隧道表面裂缝的检测方法

【技术保护点】
一种地铁隧道表面裂缝的检测方法,其特征在于,该方法包括:利用高速面阵相机组成的视觉系统,对地铁隧道洞体表面进行高速图像采集;对采集到的图像进行预处理,获得二值化图像;计算所述二值化图像的连通区域,并基于所述连通区域进行多级滤波处理,获得滤除不规则及分布无规律的噪声点的隧道表面图像;根据所述滤除不规则及分布无规律的噪声点的隧道表面图像进行隧道表面裂缝的检测,并在检测到裂缝后对其大小进行计算。

【技术特征摘要】
1.一种地铁隧道表面裂缝的检测方法,其特征在于,该方法包括:利用高速面阵相机组成的视觉系统,对地铁隧道洞体表面进行高速图像采集;对采集到的图像进行预处理,获得二值化图像;计算所述二值化图像的连通区域,并基于所述连通区域进行多级滤波处理,获得滤除不规则及分布无规律的噪声点的隧道表面图像;根据所述滤除不规则及分布无规律的噪声点的隧道表面图像进行隧道表面裂缝的检测,并在检测到裂缝后对其大小进行计算;其中,所述基于所述连通区域进行多级滤波处理包括:基于连通区域的零阶矩滤波处理、基于连通区域矩形度滤波处理及特殊噪声滤波处理;具体如下:计算二值化图像P(x,y)的连通区域,设Ck(x,y)为P(x,y)的连通区域,p为Ck(x,y)中的已知点,B表示边长为3的正方形结构元素,其公式为:其中,表示膨胀运算,Ck(x,y)的初值C0(x,y)为p,当Ck(x,y)=Ck+1(x,y)时,Ck(x,y)为一个连通区域;基于所述连通区域进行零阶矩滤波处理,获得零阶矩滤波之后的图像F(x,y),其公式如下:其中,nk为每个连通区域的零阶矩,Nn为连通区域的个数,Tn为预先设定的阈值;计算零阶矩滤波后的图像F(x,y)的连通区域Dk(x,y),再计算每个连通区域的矩形度Rk,其公式为:其中,SM为边长与坐标轴平行的外接矩形的面积;基于连通区域矩形度进行滤波,获得图像Y(x,y),其公式为:其中,NR为连通区域的个数,TR为预先设定的阈值;在基于矩形度滤波后的图像Y(x,y)中计算连通区域Ek(x,y),逐行扫描图像计算连通区域的最大宽度wmax,逐列扫描图像计算连通区域的最大高度hmax;并根据预先设定的阈值进行特殊噪声滤波处理,其公式为:其中,Tw,Th和Tr为预先设定的阈值,Nw为连通区域的个数。2.根据权利要求1所述的检测方法,其特征在于,所述对采集到的图像进行预处理,获得二值化图像包括:对采集到的图像进行灰度级腐蚀处理,获得对比度增强后的灰度图像;对所述灰度图像进行局部直方图拉伸处理及局部大津算法Otsu分割处理,获得隧道表面的二值化图像。3.根据权利要求1或2所述的检测方法,其特征在于,所述获得二值化图像,具体包括:对采集到的图像进行灰度级腐蚀处理,获得腐蚀后的图像G(x,y),其公式为:G(x,y)=min{I(x+x′,y+y′)-S(x′,y′)|(x′,y′)∈DS};其中,I(x,y)为原始图像,S(x′,y′)为结构元素,DS为S(x′,y′)的定义域;对所述图像G(x,y)进行局部直方图拉伸处理;具体的:将图像G(x,y)分割成若干个宽度为W高度为H的子图像;若边界上的子图像不满足边长条件,则在图像中选取一个包含该子图像且宽度为W高度为H的区域,将该区域作为新的边界子图像;将每一个子图像做归一化处理,其公式为:其中,Ui(x,y)表示子图像,Vi(x,y)表示归一化后的子图像,K表示子图像的个数;计算所述归一化后的子图像的均值Mi,输出归一化结果Li(x,y),其公式为:

【专利技术属性】
技术研发人员:余祖俊王耀东朱力强郭保青白彪
申请(专利权)人:北京交通大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1