本发明专利技术揭示了一种人脸支付认证系统及方法,所述认证系统包括人脸原始数据绑定、面部质量评估、面部姿态纠正、人脸识别、支付数据智能处理五大模块;人脸原始数据绑定用以标准的用户人脸信息,作为原始绑定数据;面部质量评估对采集数据面部综合质量评估,筛选比对数据;面部姿态纠正是以不损失面部数据为前提,纠正偏离姿态;人脸识别以采集需要比对的人脸信息,提取面部特征信息,并与比对数据库中的对应面部特征信息进行比对,判断是否为同一人;支付数据智能处理用以在人脸支付认证交易成功后,对人脸信息进行综合评估和判断。本发明专利技术提出的脸支付认证系统及方法,可提高支付的安全性、便捷性,同时提高系统识别的精确度。
【技术实现步骤摘要】
【专利摘要】本专利技术揭示了一种,所述认证系统包括人脸原始数据绑定、面部质量评估、面部姿态纠正、人脸识别、支付数据智能处理五大模块;人脸原始数据绑定用以标准的用户人脸信息,作为原始绑定数据;面部质量评估对采集数据面部综合质量评估,筛选比对数据;面部姿态纠正是以不损失面部数据为前提,纠正偏离姿态;人脸识别以采集需要比对的人脸信息,提取面部特征信息,并与比对数据库中的对应面部特征信息进行比对,判断是否为同一人;支付数据智能处理用以在人脸支付认证交易成功后,对人脸信息进行综合评估和判断。本专利技术提出的脸支付认证系统及方法,可提高支付的安全性、便捷性,同时提高系统识别的精确度。【专利说明】
本专利技术属于支付认证及人脸识别
,涉及一种支付认证系统,尤其涉及一种人脸支付认证系统;同时,本专利技术还涉及一种人脸支付认证方法。
技术介绍
中国的人脸识别技术从上世纪九十年代末开始发展,在经历十几年的探索、研究、实践、试商用和商用,到目前为止,人脸识别技术水平的不断成熟,公安领域得到广泛的应用,在2014年公安部全面开展户口清理整顿工作中,采用人脸识别技术,对二代身份证库进行海量比对和检索,发现‘多重户口’或‘双户口’,核准注销79万个重复户口。人脸识别技术越来越多被应用到安防、门禁、楼宇、社会福利保障、电子商务等领域,尤其在支付领域发展迅速。2013年芬兰Uniqul创业公司,推出是一款基于脸部识别系统的支付平台,该系统不需要钱包、信用卡或手机,支付时只需要面对POS机屏幕上的摄像头,系统会自动将消费者面部信息与个人账户相关联,整个交易过程十分便捷。与此同时,国际巨头eBay旗下的支付公司PayPal宣布,在英国伦敦泰晤士河畔的里士满区的12家商场推出依靠“人脸识别”的支付系统。在日本,同样已经有一小部分公司开始使用人脸识别软件进行各种交易。这一实践让流行了近10年的“刷卡”消费改为“刷脸”消费,颠覆传统的支付方式,方便、快捷、简单、时尚的刷脸成为将来的一种趋势。现有的人脸支付逐渐发展壮大,但各国发展都不一样,主要是人脸生物特征因种群因素,面部特征会有区别。另外,面部质量评估、姿态纠正、人脸支付交易数据智能化因人类种群原因面部特征特点,处理的算法完全不一样,所以出现人脸识别技术没有统一的标准和算法。现有的购物支付方式通常包括现金、银行卡、信用卡等方式,随着科技的发展,移动支付(如通过手机)最近两年也开始被广泛使用。然而,现有的支付方式有很多不足之处;如:银行卡、信用卡容易被盗刷,手机丢失后也有被盗用资金的风险。究其原因,主要是现有支付方式通常只有密码认证,商家无法认证银行卡、手机的持有者是否是本人。随后,出现了包含人脸认证功能的移动支付系统。移动支付系统中,购物者利用第三方支付提供的iOS、Android和Windows Phone移动应用软件,可以在他们的手机上看到附近支持“人脸识别”支付的店铺。用户走近店铺后,挑选自己喜欢物品,商家与顾客核实个人信息后,收银员为客户提供‘刷脸’服务,完成购买流程。用户唯一要做的就是在使用前将自己的银行账户或信用卡与移动支付平台相关联。移动支付人脸识别认证技术成为未来支付认证的主要技术,尤其在移动支付和第三方支付平台领域。目前国内在移动支付领域的研究还在初期阶段,遇到很多问题,如采集数据无法事先质量评估、人脸识别度准确度低、错误率高、每隔段时间需重新绑定人脸,采集数据必须标准证明姿态,用户体验差等问题,需要持续技术研发,解决遇到的各类问题,才能最终实现人脸支付。有鉴于此,如今迫切需要设计一种人脸支付认证系统,以便克服现有支付方式的上述缺陷。
技术实现思路
本专利技术所要解决的技术问题是:提供一种人脸支付认证系统,使采集和交易数据能够智能化处理和自我学习,提高支付的安全性、便捷性,同时提升系统识别的精确度。此外,本专利技术还提供一种人脸支付认证方法,可提高支付的安全性,同时提高系统识别的精确度。为解决上述技术问题,本专利技术采用如下技术方案:一种人脸支付认证系统,所述认证系统包括:人脸原始数据绑定模块,用以采集用户的人脸照片,进行面部质量评估和面部姿态纠正,作为原始绑定数据,将用户的人脸信息与该用户进行绑定,并将人脸照片和提取的人脸面部特征信息存储于比对数据库中;面部质量评估单元,用以对采集照片的质量进行评估,主要指标包括:像素高低、脸型像素大小、局部缺失或遮挡、脸型角度;脸型角度指与正面标准的上下、左右偏离角,面部仰视角控制在10°之内、俯视角控制在15°之内,左右角度控制在15°之内;面部姿态纠正单元,用以采集的人脸通过质量评估后,依据的数据脸型角度,对高于最小阀值的人脸照片进行一定程度的姿态纠正,在保证面部原始数据前提下,调整偏离姿态,使脸型更接近正面标准照,大幅提升人脸识别的准确度;姿态纠正以标准正面照为基准,自动智能调整仰视角5°之内、俯视角10°之内、左右偏转角10°内;人脸识别模块,用以对人脸照片进行面部质量评估和面部姿态纠正,提取面部特征信息,并将提取出的面部特征信息与所述比对数据库中的对应人脸信息的面部特征信息进行比对,判断是否为同一人;支付数据智能处理模块,用以在多次完成人脸支付交易的人脸信息后,根据质量评估标准,包括采集人脸光线、清晰度、像素高低、躁点、是否标准正面、特征是否明显,对交易数据进行质量评估,如果比对的人脸信息的质量优于比对数据库中存储的人脸信息,则进行额外学习、优化,使该交易数据参加人脸识别算法的自我学习,并参加有限度认证比对,逐渐参与人脸支付认证的识别;对参与人脸识别的交易数据,通过面部质量评估,依据低权值、中权值、高权值三种级别介入,高权值介入一段时间后,在多次优于原始绑定人脸数据前提下,与原始数据交换权值比例,再经多次交易认证后,替换原始的老旧数据,依此原则循环,实现人脸数据自我学习、优化,智能化管理人脸数据,优化原始的绑定数据,提升数据质量;其中,所述人脸识别模块包括:人脸检测单元,用以识别采集的认证照片是否含完整人脸;人脸特征提取单元,用以提取人脸生物特征,以特定的方式记录,生成人脸特征模板,为人脸比对和匹配提供原始数据;人脸比对与匹配单元,用以人脸识别核心算法依据人脸特征数据模板,进行整个面部各个生物特征点的逐一比对、匹配,最终返回相似值;辨认结果单元,用以依据人脸生物特征识别算法返回值,判定和辨认是否为同一人;其中,所述人脸比对与匹配单元包括一对一比对子单元、一对多比对子单元;所述一对一比对子单元用以在客户端实时采集人脸照片后,将采集的人脸照片与支付账户预先绑定的目标照片,进行人脸识别和比对,辨认是否为同一人,然后返回识别结果;所述一对多比对子单元用以进行高安全度智能识别,通过客户端实时采集上传照片,与支付账户预先绑定的多张目标照片比对,逐一遍历,并参考各次比对后的相似度,依次从高低带排列,对于低比值的数据,再采用局部比对算法进行比对,包括对双眼、瞳孔、鼻梁、嘴进行局部比对,然后依据各类比值,通过算法综合进行更准确的识别、辨认和排序,多角度审核判断是否为同一人,然后返回识别结果。一种人脸支付认证系统,所述认证系统包括:人脸原始数据绑定模块,用以采集用户的人脸照片,作为原始绑定数据,将用户的人脸信息与该用户进行绑定,并将人脸照片和本文档来自技高网...
【技术保护点】
一种人脸支付认证系统,其特征在于,所述认证系统包括:?人脸原始数据绑定模块,用以采集用户的人脸照片,进行面部质量评估和面部姿态纠正,作为原始绑定数据,将用户的人脸信息与该用户进行绑定,并将人脸照片和提取的人脸面部特征信息存储于比对数据库中;?面部质量评估单元,用以对采集照片的质量进行评估,主要指标包括:像素高低、脸型像素大小、局部缺失或遮挡、脸型角度;脸型角度指与正面标准的上下、左右偏离角,面部仰视角控制在10°之内、俯视角控制在15°之内,左右角度控制在15°之内;?面部姿态纠正单元,用以采集的人脸通过质量评估后,依据的数据脸型角度,对高于最小阀值的人脸照片进行一定程度的姿态纠正,在保证面部原始数据前提下,调整偏离姿态,使脸型更接近正面标准照,大幅提升人脸识别的准确度;姿态纠正以标准正面照为基准,自动智能调整仰视角5°之内、俯视角10°之内、左右偏转角10°内;?人脸识别模块,用以对人脸照片进行面部质量评估和面部姿态纠正,提取面部特征信息,并将提取出的面部特征信息与所述比对数据库中的对应人脸信息的面部特征信息进行比对,判断是否为同一人;?支付数据智能处理模块,用以在多次完成人脸支付交易的人脸信息后,根据质量评估标准,包括采集人脸光线、清晰度、像素高低、躁点、是否标准正面、特征是否明显,对交易数据进行质量评估,如果比对的人脸信息的质量优于比对数据库中存储的人脸信息,则进行额外学习、优化,使该交易数据参加人脸识别算法的自我学习,并参加有限度认证比对,逐渐参与人脸支付认证的识别;对参与人脸识别的交易数据,通过面部质量评估,依据低权值、中权值、高权值三种级别介入,高权值介入一段时间后,在多次优于原始绑定人脸数据前提下,与原始数据交换权值比例,再经多次交易认证后,替换原始的老旧数据,依此原则循环,实现人脸数据自我学习、优化,智能化管理人脸数据,优化原始的绑定数据,提升数据质量;?其中,所述人脸识别模块包括:?人脸检测单元,用以识别采集的认证照片是否含完整人脸;?人脸特征提取单元,用以提取人脸生物特征,以特定的方式记录,生成人脸特征模板,为人脸比对和匹配提供原始数据;?人脸比对与匹配单元,用以人脸识别核心算法依据人脸特征数据模板,进行整个面部各个生物特征点的逐一比对、匹配,最终返回相似值;?辨认结果单元,用以依据人脸生物特征识别算法返回值,判定和辨认是否为同一人;?其中,所述人脸比对与匹配单元包括一对一比对子单元、一对多比对子单元;?所述一对一比对子单元用以在客户端实时采集人脸照片后,将采集的人脸照片与支付账户预先绑定的目标照片,进行人脸识别和比对,辨认是否为同一人,然后返回识别结果;?所述一对多比对子单元用以进行高安全度智能识别,通过客户端实时采集上传照片,与支付账户预先绑定的多张目标照片比对,逐一遍历,并参考各次比对后的相似度,依次从高低带排列,对于低比值的数据,再采用局部比对算法进行比对,包括对双眼、瞳孔、鼻梁、嘴进行局部比对,然后依据各类比值,通过算法综合进行更准确的识别、辨认和排序,多角度审核判断是否为同一人,然后返回识别结果。...
【技术特征摘要】
【专利技术属性】
技术研发人员:耿敢超,徐蕾,苏剑波,卢威,
申请(专利权)人:上海看看智能科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。