本发明专利技术公开了一种基于计算机视觉的快速行人检测方法,此方法包括:首先,采集行人视频图像,然后采用ViBe算法为视频图像帧建立背景模型,通过融合帧差法的ViBe算法分割出前景区域;然后,计算各目标块轮廓的最高点坐标,完成头部候选区域的定位;最后,使用目标检测窗口对头部候选区进行遍历获取待检测样本,将待测样本输入经过Adaboost算法训练好的复合头部检测器,判断是否为人头样本,以此得到行人检测结果。本方发明专利技术通过以上技术方案有效的解决了现有技术中鲁棒性和实时性差的技术问题。
【技术实现步骤摘要】
一种基于计算机视觉的快速行人检测方法
本专利技术涉及图像处理
,更具体地,涉及一种基于计算机视觉的快速行人检测方法。
技术介绍
智能视频监控技术是计算机视觉领域近年来新兴的一个研究方向,它是一种基于人工智能的计算视觉技术,以场景中的运动目标作为分析对象,其中运动目标包括行人、车辆、动物等。由于人是社会活动的主体,所以以行人作为目标的检测在智能视频监控领域越来越受到研究人员们的关注。在安全方面,智能视频监控系统通过摄像头获取监控场景的视频图像,并对得到的图像进行处理,当场景中出现可疑的人或事件时进行报警,从而阻止犯罪和灾难性事件的发生,保证人民群众的生命财产安全;在交通应用上,通过在车辆上安装行人检测装置提高车辆驾驶的安全性来减少车祸的发生,同时也可以检测交通中行人的违法和不安全行为。在一些特定领域视频监控系统必须快速的检测并识别出行人目标,并发出警告信号。例如军事基地,监狱,高速公路等场景。目前大多数人体跟踪算法都需要已知目标的初始位置(如通过人机交互方式),而实用的跟踪系统需要自动定位初始目标,这就需要人体检测算法的支持。检测人体目标比检测其他目标更具挑战性。在行人检测的技术方法上,国内普遍采用基于单目视觉的方法,利用人体边缘、纹理等特征建立模板并综合运用神经网络、支持向量机、级联检测器这些机器学习方法。但现有的单目视觉方法鲁棒性不高,且实时性无法满足检测行人安全状态的需求。国外行人检测所使用的主流方法是机器视觉算法和传感器结合,但在混合交通条件下进行行人检测仍然是一个很大的挑战,首先是受光照和天气的影响较大。因此,如何有效的提出一种应对行人姿态多变和环境条件复杂的快速行人检测算法变得非常的重要。
技术实现思路
为了解决现有技术中因环境和人为因素干扰造成目标识别率低和目标检测实时性差的问题,本专利技术提出了一种基于计算机视觉的快速行人检测方法。本专利技术是通过以下技术方案实现的,本专利技术包括以下步骤:步骤1:用摄像机提取监控场景中目标运动过程的视频图像,并将摄像机采集到的图像实时传送给后台计算机;步骤2:运动目标检测:把通过视频采集器获取的实时视频图像传送给计算机,计算机对实时接收的图像序列采用改进的ViBe算法进行背景建模,通过比较这个模型与当前帧图像来分割出前景目标。所述的背景建模的具体步骤包括:1)在视频序列图像中,对单帧图像中每个像素进行背景模型的初始化。2)对后续输入的帧图像进行前景目标的分割,同时对像素的背景模型进行更新。3)对被判定为背景像素的点的邻域像素进行随机选择性更新。步骤3:轮廓最高点检测:提取出前景信息后,对各目标块进行标记,利用轮廓信息得到最高的坐标值。所述的最高点坐标计算是指:对边缘轮廓坐标进行求导计算得到目标区域最高点坐标,由于行人轮廓的下半部分不包括最高点信息,所以在计算轮廓信息时只对上半部分轮廓坐标求导计算。所述上半部分轮廓是指:在对目标前景提取后,对提取出的前景区域用最小矩形进行标示,以矩形的中心作为目标的中心,从目标中心到轮廓最高点这部分轮廓称为目标区域的上半部分轮廓。步骤4:根据轮廓特征点和头部检测器来定位和检测出行人目标:在求得各目标轮廓最高点后,根据轮廓最高点确定头部候选区,使用目标检测窗口对头部候选区进行遍历,得到待检测样本,然后将待检测样本输入训练好的复合头部检测器,判断其是否为头部目标,以此来判定是否为行人目标。在一般情况下目标块轮廓的最高点为行人目标的头部位置,所以求取最高点坐标后在该点下方指定范围进行搜索,相比对整个目标块进行遍历的方法降低了时间复杂度,提高检测识别效率。采用滑动可变的头部检测窗口对指定区域进行遍历,检测到头部目标后将待检测样本输入训练好的复合头部检测器,对样本进行判定,从而检测出行人目标。步骤4中使用的训练好的复合头部检测器是采用Adaboost算法进行训练,即在不同的场景中从不同角度采集行人头部图像建立头部检测器训练样本库,头部检测器包括头顶检测器、正面检测器、侧面检测器和后脑勺检测器四个子检测器,采用Adaboost算法对各子检测器进行训练,再将子检测器级联组成最终的复合头部检测器。组成复合头部检测器的子检测器的多少是根据摄像机的拍摄角度而定,当摄像机水平拍摄时,只需要三个子检测器即可完成检测,三个子检测器是指正面检测器、侧面检测器和后脑勺检测器;当摄像机倾斜拍摄时需要四个子检测器才能完整检测,指头顶检测器、正面检测器、侧面检测器和后脑勺检测器,当摄像机垂直拍摄时只需要一个子检测器就可完整的检测,即头顶检测器。头部检测器的训练包括以下步骤:采集训练样本:在特定几个场景中采集不同角度和不同距离获取的头部图像,每类正样本3000张,负样本从不含人头图像的风景和建筑设计图片中随机截取,负样本45000张。训练样本:根据具体的检测器来选择对应的样本,通过第二次训练后的负样本通过第一次训练的正负样本检测器来检测得到,训练出的检测器误检的样本作为下次训练的负样本。重复这个过程,以迭代的方式训练出最终需要的检测器。本专利技术是具有实时鲁棒的行人检测算法,采用改进的ViBe算法来获取去运动目标,相比高斯法、核密度法、码本法等方法检测速度很快,满足实时性和鲁棒性的要求。另外,在依靠轮廓特征找出轮廓最高点的情况下利用检测器对目标进行识别,避免了因检测器遍历整个图像窗口所造成的时间复杂度的增加,同时在行人识别时,选用行人头部特征,并将头部检测分为三个子检测器并级联组成最终的复合头部检测器,选用头部特征避免了因遮挡造成的漏检,提高了识别的准确率。由此可见,采用上述行人检测方法具有高效准确的特点。附图说明附图用来提供对本专利技术的进一步理解,与本专利技术的实施例一起用于解释本专利技术,并不构成对本专利技术的限制。在附图中:图1:本专利技术基于计算机视觉的快速行人检测方法整体流程图。具体实施方式下面详细的介绍本专利技术的一个具体实施过程,应当理解,此处所描述的优选实施例仅用于说明和解释本专利技术,并不用于限定本专利技术。本专利技术的一种基于计算机视觉的快速行人检测方法的实施例包括以下几个步骤步骤1:采集校园活动广场的视频图像,对图像进行预处理。首先需要为图像进行背景建模,对比混合高斯法、核密度估计法、均值法、码本法和ViBe法等几种背景建模检测算法,综合考虑算法对硬件内存,鲁棒性,实时性的要求。本专利选择ViBe法来对图像建立背景模型。由于ViBe算法易引入Ghost区域,这些区域是由原静止的物体开始运动或原来运动的物体变为静止所引起的,能否快速的去除这些Ghost区域是提高ViBe算法和行人检测算法鲁棒性的关键。通过观察ViBe法在视频帧中检出的前景目标区域发现,由ViBe算法得到的前景目标区域与帧差法得到的检测相似,故本专利采用结合帧差法的改进ViBe算法来对背景进行建模。其背景建模算法包括以下步骤:设Ij为第j帧图像,其分割后的图像为Fj,第i帧和第m帧的差分后的图像为Di,m1.1:将视频图像分帧,并对单帧图像中的每个像素进行背景模型初始化。假设k=1时输入第一帧图像I1;KG(x,y)、f1(x,y)分别是像素点(x,y)背景模型、空间领域和像素值,这里认为任意像素的值与其邻域像素的值在空间域上具有相似的分布,像素点(x,y)等概率随机选取的。则有:其中n=1,2...N表示抽样本文档来自技高网...
【技术保护点】
一种基于计算机视觉的快速行人检测方法,其特征在于,包含以下步骤:步骤1:用摄像机提取监控场景中目标运动过程的视频图像,并将摄像机采集到的图像实时传送给后台计算机;步骤2:运动目标检测:包括背景模型初始化和模型更新;所述背景模型初始化是计算机对实时接收的图像序列采用像素级算法ViBe法,对图像中每个像素进行初始化建立背景模型;所述模型更新是指采用帧差法和ViBe法相结合的方法求取的运动区域,并基于原图像对出现的Ghost区域中的像素进行背景模型更新,即通过比较这个模型与当前帧图像来分割出前景目标:具体步骤如下:2.1)将视频图像分帧,并对单帧图像中的每个像素进行背景模型初始化,设k=1时输入第1帧图像I1;KG(x,y)、f1(x,y)分别是像素点(x,y)背景模型、空间领域和像素值BFM1(x,y)={fn1(x,y)|(x,y)∈KG(x,y)};]]>2.2)对第2帧图像I2(k=2)进行前景分割,得到分割后图像F2并对各个像素的背景模型进行更新,设k=i,则像素点(x,y)的背景模型为像素值为fi(x,y)利用如下准则来判读该像素点是否为前景点R为分开前景和背景像素点设定的阈值;2.3)输入第3帧视频图像I3(k=3),计算I3分割后图像F3;使用下面公式得到I2与I3的差分和阈值化后的图像D2,3,将D2,3与F3做与运算,去除F3中的一部分Ghost区域,然后基于原图像I3将这部分Ghost区域的像素背景模型更新Di,j=1|II(x,y)-Ij(x,y)|≥T0|II(x,y)-Ij(x,y)|<T;]]>T为设定阈值;2.4)输入第k帧视频图像Ik(k=4),利用上一帧更新得到背景模型计算Fk,使用上面公式得到Ik‑1与Ik做差分并阈值化后的图像Dk‑1,k,同时将Dk‑1.k与Fk做与运算,去除Fk中的一部分鬼影区域,而后基于原图像Ik将去除的Ghost区域的像素点进行背景模型更新;2.5)重复步骤2.4,依次输入后续视频序列Ik(k=5,6...M)直到最大视频帧数;步骤3:目标块轮廓特征点的提取:将提取出的前景目标区域用最小矩形窗口进行标示,并求出各目标块的面积S和轮廓G,通过目标块面积S来选择求取目标轮廓最高点坐标;步骤4:根据轮廓特征点和头部检测器来定位和检测出行人目标:在求得各目标轮廓最高点后,根据轮廓最高点确定头部候选区,使用目标检测窗口对头部候选区进行遍历,得到待检测样本,然后将待检测样本输入训练好的复合头部检测器,判断其是否为头部目标,以此判定是否为行人目标。...
【技术特征摘要】
1.一种基于计算机视觉的快速行人检测方法,其特征在于,包含以下步骤:步骤1:用摄像机提取监控场景中目标运动过程的视频图像,并将摄像机采集到的图像实时传送给后台计算机;步骤2:运动目标检测:包括背景模型初始化和模型更新;所述背景模型初始化是计算机对实时接收的图像序列采用像素级算法ViBe法,对图像中每个像素进行初始化建立背景模型;所述模型更新是指采用帧差法和ViBe法相结合的方法求取的运动区域,并基于原图像对出现的Ghost区域中的像素进行背景模型更新,即通过比较这个模型与当前帧图像来分割出前景目标:具体步骤如下:2.1)将视频图像分帧,并对单帧图像中的每个像素进行背景模型初始化,设k=1时输入第1帧图像I1;KG(x,y)、f1(x,y)分别是像素点(x,y)背景模型、空间领域和像素值2.2)对第2帧图像I2(k=2)进行前景分割,得到分割后图像F2并对各个像素的背景模型进行更新,设k=i,则像素点(x,y)的背景模型为像素值为fi(x,y)利用如下准则来判读该像素点是否为前景点R为分开前景和背景像素点设定的阈值;2.3)输入第3帧视频图像I3(k=3),计算I3分割后图像F3;使用下面公式得到I2与I3的差分和阈值化后的图像D2,3,将D2,3与F3做与运算,去除F3中的一部分Ghost区域,然后基于原图像I3将这部分Ghost区域的像素背景模型更新T为设定阈值;2.4)输入第k帧视频图像Ik(k=4),利用上一帧更新得到背景模型计算Fk,使用上面公式得到Ik-1与Ik做差分并阈值化后的图像Dk-1,k,同时将Dk-1.k与Fk做与运算,去除Fk中的一部分鬼影区域,而后基于原图像Ik将去除的Ghost区域的像素点进行背景模型更新;2.5)重复步骤2.4,依次输入后续视频序列Ik(k=5,6...M)直到最...
【专利技术属性】
技术研发人员:张鹏,程方,史涛,张瑞,朱建虎,蒋明浪,
申请(专利权)人:重庆邮电大学,
类型:发明
国别省市:重庆;85
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。