基于超级电容的高压测量系统感应取能电源装置制造方法及图纸

技术编号:10038912 阅读:257 留言:0更新日期:2014-05-11 06:46
本实用新型专利技术涉及基于超级电容的高压测量系统感应取能电源装置,包括电流互感器、整流滤波电路、DC/DC模块、锂电池以及电源管理单元,电流互感器从高压电缆感应取能,经整流滤波电路,再经过DC/DC模块输出稳定的电压,还包括超级电容,所述的电源管理单元包括超级电容充电控制电路和锂电池充电控制电路,DC/DC模块通过超级电容充电控制电路给超级电容充电,超级电容为负载供电,同时DC/DC模块通过锂电池充电控制电路给锂电池充电,锂电池为负载供电。采用超级电容作为储能装置,解决现有环网柜在线监测系统所用电源装置的循环使用次数少、维护量大,体积大且需要停电改造现有的环网柜等问题。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】

    本技术涉及一种电源技术,尤其涉及一种基于高压测量系统感应取能电源装置。
技术介绍
高压测量系统的供电问题是目前工程应用的一个难点,研究稳定、可靠、低功耗的供电电源具有重要的工程使用价值。目前常用的供电方式有太阳能、蓄电池、激光功能、母线感应取能等。由于太阳能电池板体积庞大,不利于安装,而且易受气候的影响,在南方多雨多雾的气候条件下不适用于在线设备;电压互感器对绝缘性要求高,易受温度、杂散电容和电磁干扰等多种因素的影响。虽然可以通过改变电容C的大小来调整功率的输出,但大电容的选用可能产生谐波,造成分压不稳,影响后续电路;激光功能易受地理条件限制,设备复杂导致成本过高且功率和效率都很低;最有发展前景的供电方式是从输电线路抽取电能,在导线上套装取能线圈感应出交流电压,然后经过整流、滤波、稳压后输出稳定可靠的直流,实现隔离式供电。目前电力系统高压输电线路在线监测系统很多采用GSM/GPRS数据传输方式,GSM/GPRS模块在数据收发瞬间大功率,电流会高达几百毫安,而待机情况下工作电流仅为10~20 mA。采用感应取能在小电流情况下电源输出功率很小,不足以为数据收发传输时提供足够的大功率电能。取能线圈配合锂离子电池浮充方式,存在锂离子电池充电管理复杂,充电温度受限制等缺点。本电源电路设计中加入了超级电容器,解决了瞬间大功率供电这个难点,电路简单易于维护。
技术实现思路
本技术所要解决的技术问题是针对上述
技术介绍
的不足,提供一种基于超级电容的高压测量系统感应取能电源装置,采用超级电容作为储能装置,特制电流互感器(TA)和锂电池锂电池能仪器、设备的特性,做好仪器、设备的维修保养工作。实验完备两路取能,解决现有环网柜在线监测系统所用电源装置的循环使用次数少、维护量大,体积大且需要停电改造现有的环网柜等问题。技术方案为达到上述目的,本技术提出的技术方案如下:    基于超级电容的高压测量系统感应取能电源装置,包括电流互感器、整流滤波电路、DC/DC模块、锂电池以及电源管理单元,通过电流互感器从高压电缆感应取能,经过整流滤波电路将交流电转化直流电,再经过DC/DC模块输出稳定的电压,还包括超级电容,所述的电源管理单元包括超级电容充电控制电路和锂电池充电控制电路,DC/DC模块通过超级电容充电控制电路给超级电容充电,超级电容为负载供电,同时DC/DC模块通过锂电池充电控制电路给锂电池充电,锂电池为负载供电。    作为本技术的进一步优化方案,所述电流互感器包括铁芯和绕在铁芯上的线圈,所述线圈为单端或双端开气隙的线圈。    作为本技术的进一步优化方案,还包括冲击保护电路,所述的线圈输出端接至冲击保护电路,所述冲击保护电路则接至整流滤波电路的输入端。    作为本技术的进一步优化方案,还包括过压保护电路,过压保护电路的输入端接至整流滤波电路的输出端,过压保护电路的一路输出端则接至锂电池的充电端,另一路输出端则接至DC/DC模块输入端。    作为本技术的进一步优化方案,所述的超级电容包括第一、第二超级电容器,所述DC/DC模块为所述第一超级电容器充电,第一超级电容器为第二超级电容器充电,第二超级电容器为负载供电。有益效果(1)与蓄电池相比,本方法能在线取电并为超级电容充电,不需要更换电池;(2)与太阳能电池相比,本方法的能量密度大,能量转换率高,在各种气候下都能可靠供电;(3)与母线取能加蓄电池组合方法相比,本方法超级电容已可部分替代电池的功能,并在充放电次数和使用寿命上优于电池。此外,当监测系统有数据远传装置时,超级电容的瞬时大功率放电特性可很好地满足发送数据瞬间的大功率需求,而不会引起大幅压降。附图说明图1是取能电源的原理框图;图2(a)是常规线圈的结构图;图2(b)是改进线圈的结构图;图3铁芯改进前后磁化曲线对比图;图4是过压保护电路电路原理图;图5是超级电容充电控制电路图;图6是电源管理单元电路原理图。具体实施方式如图1所示,本技术公开一种基于超级电容的高压测量系统感应取能电源装置,包括电流互感器、冲击保护电路、整流滤波电路、过压保护电路、DC/DC模块、两个超级电容器、锂电池以及电源管理单元。特制TA套在高压电缆上,利用电磁感应原理通过电流互感器从高压电缆感应取能,经过整流滤波电路将交流电转化直流电,经过过压保护电路一方面将多余的能量供给锂电池,另一方面经过高效率的DC/DC模块,输出稳定的电压,为高压测量系统供能。所述的电源管理单元包括超级电容充电控制电路和锂电池充电控制电路,当电压过大时,启动过压保护电路,一部分能量通过DC/DC模块给负载供电(DC/DC模块通过超级电容充电控制电路给超级电容充电,超级电容为负载供电),同时将多余的能量通过锂电池充电控制电路给锂电池充电,锂电池为负载供电。本电路通过超级电容充电控制单元和锂电池充电控制单元,有效解决了电源续航能力和输出电压稳定性问题。(1)电流互感器如图2(a)所示,为现有技术的电流互感器。电流互感器1包括铁芯和成匝绕在铁芯上的线圈。由于铁芯磁饱和时,二次侧电压十分不稳定,深度饱和时感应电压波形发生畸变,成为尖顶脉冲波。由于后端电子元件耐压值不高,峰值增大时达几百伏,可能造成芯片烧毁等严重后果。长期工作在深度饱和状态使铁损居高不下,线圈温升过高,有可能引起高频振动甚至烧坏线圈。因此应尽量防止铁芯工作在饱和状态,避免长期工作在深度饱和状态。如图2(b)所示为本技术电流互感器,所述的线圈为单端或双端开气隙的线圈,通过引入气隙δ1和δ2的办法,增加磁路的磁阻,减小相对磁导率μr,推迟铁芯达到饱和时H值。如图3所示,铁芯改进后的磁化曲线对比图。所以选用使用低磁导率、高饱和磁感应强度的硅钢片作为磁芯材料,结构为开合式。(2)冲击保护电路    为了防止雷电冲击电流和瞬时故障大电流时烧毁电源电路,在整流桥前使用了瞬变抑制二极管(TVS)(即冲击保护电路),TVS限制了感应线圈输出的冲击电压。即所述的电流互感器输出端接至冲击保护电路的输入端,所述冲击保护电路的输出端则接至整流滤波电路的输入端。(3)整流滤波电路整流采用桥式整流,滤波采用的常用的π型LC滤波。(4)过压保护电路过压保护电路的输入端接至整流滤波电路的输出端,过压保护电路一路输出端接至锂电池的充电端,另一路输出端则接至DC/DC模块输入端。如图4所示,左边是接整流滤波电路的输出端,右边一路则接DC/DC模块的输入端,右边另一路则接充电芯片的输入端。当R3两端的电压小于继电器的动作电压时,继电器选通“1”端,滤波后全部电压加到DC/DC模块两端,全部功率提供给负载;当R3的电压大于继电器动作电压时,继电器选通“2”端,R1被切除,R2和R3电压接入DC/DC模块的输入端,供给负载;R1电压接入锂电池充电芯片输入端,为电池充电提供能量。(5)稳压电路     选用一本文档来自技高网...

【技术保护点】
基于超级电容的高压测量系统感应取能电源装置,包括电流互感器、整流滤波电路、DC/DC模块、锂电池以及电源管理单元,通过电流互感器从高压电缆感应取能,经过整流滤波电路将交流电转化直流电,再经过DC/DC模块输出稳定的电压,其特征在于:还包括超级电容,所述的电源管理单元包括超级电容充电控制电路和锂电池充电控制电路,DC/DC模块通过超级电容充电控制电路给超级电容充电,超级电容为负载供电,同时DC/DC模块通过锂电池充电控制电路给锂电池充电,锂电池为负载供电。

【技术特征摘要】
1.基于超级电容的高压测量系统感应取能电源装置,包括电流互感器、整流滤波电路、DC/DC模块、锂电池以及电源管理单元,通过电流互感器从高压电缆感应取能,经过整流滤波电路将交流电转化直流电,再经过DC/DC模块输出稳定的电压,其特征在于:还包括超级电容,所述的电源管理单元包括超级电容充电控制电路和锂电池充电控制电路,DC/DC模块通过超级电容充电控制电路给超级电容充电,超级电容为负载供电,同时DC/DC模块通过锂电池充电控制电路给锂电池充电,锂电池为负载供电。
2.根据权利要求1所述的基于超级电容的高压测量系统感应取能电源装置,其特征在于:所述电流互感器包括铁芯和绕在铁芯上的线圈,所述线圈为单端或双端开气隙的线圈。
3.根据权利要...

【专利技术属性】
技术研发人员:钱承山李俊丁金卉王志伟孙鹏
申请(专利权)人:南京信息工程大学
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1