混合监测的受损索集中载荷支座线位移识别方法基于混合监测,通过监测索结构温度和环境温度来决定是否需要更新索结构的力学计算基准模型,得到计入索结构温度和环境温度的索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量数值变化矩阵。依据被监测量当前数值向量同被监测量当前初始数值向量、单位损伤被监测量数值变化矩阵和待求的被评估对象当前名义损伤向量间存在的近似线性关系算出被评估对象当前名义损伤向量的非劣解,据此可以在有温度变化时,识别出支座线位移、集中载荷变化量和受损索。
【技术实现步骤摘要】
【专利摘要】基于混合监测,通过监测索结构温度和环境温度来决定是否需要更新索结构的力学计算基准模型,得到计入索结构温度和环境温度的索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量数值变化矩阵。依据被监测量当前数值向量同被监测量当前初始数值向量、单位损伤被监测量数值变化矩阵和待求的被评估对象当前名义损伤向量间存在的近似线性关系算出被评估对象当前名义损伤向量的非劣解,据此可以在有温度变化时,识别出支座线位移、集中载荷变化量和受损索。【专利说明】
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见,本方法将该类结构表述为“索结构”,并将索结构的所有承载索、承载缆,及所有仅承受轴向拉伸或轴向压缩载荷的杆件(又称为二力杆件),为方便起见统一称为“索系统”,本方法中用“支承索”这一名词指称承载索、承载缆及仅承受轴向拉伸或轴向压缩载荷的杆件,有时简称为“索”,所以在后面使用“索”这个字的时候,对桁架结构实际就是指二力杆件。在结构服役过程中,对支承索或索系统的健康状态的正确识别关系到整个索结构的安全。在环境温度发生变化时,索结构的温度一般也会随着发生变化,在索结构温度发生变化时,索结构支座可能发生线位移,索结构承受的集中载荷也可能发生变化,同时索结构的健康状态也可能在发生变化,在这种复杂条件下,本方法基于混合监测(本方法通过对本节前述不同类型的索结构的可测量参数的变化的混合监测来判断索结构的健康状态,本方法将所有被监测的索结构特征参量统称为“被监测量”,由于此时被监测量是由索结构的不同类型的可测量参数混合组成,本方法称此为混合监测)来识别支座线位移、受损索和索结构承受的集中载荷的变化量,属工程结构健康监测领域。
技术介绍
剔除载荷变化、索结构支座线位移和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别结构的健康状态的变化,是目前迫切需要解决的问题;剔除载荷变化、索结构健康状态变化和结构温度变化对索结构支座线位移识别结果的影响,从而准确地识别索结构支座线位移,也是目前迫切需要解决的问题;同样的,剔除结构温度变化、索结构支座线位移和结构健康状态变化对结构承受的集中载荷的变化量的识别结果的影响,对结构安全同样具有重要意义。基于结构健康监测技术,本方法公开了一种解决这三个问题的有效方法。当索结构承受的集中载荷出现变化时、或索结构发生支座线位移、或索结构的温度发生变化时、或索系统的健康状态发生变化(例如发生损伤)时、或者四种情况同时发生时,会引起索结构的可测量参数的变化,例如会引起索力的变化,会影响索结构的变形或应变,会影响索结构的形状或空间坐标,会引起过索结构的每一点的任意假想直线的角度坐标的变化(例如结构表面任意一点的切平面中的任意一根过该点的直线的角度坐标的变化,或者结构表面任意一点的法线的角度坐标的变化),所有的这些变化都包含了索系统的健康状态信息,也包含了支座线位移和集中载荷的变化量信息,也就是说可以利用索结构的可测量参数来识别支座线位移、受损索和集中载荷的变化量。在支座有线位移时,目前已公开的技术、方法中,有些仅仅能够在其它所有条件不变时(仅仅只有结构承受的载荷发生变化)识别结构承受载荷的变化,有些仅仅能够在其它所有条件不变时(仅仅只有结构健康状态发生变化)识别结构健康状态的变化,有些仅仅能够在其它所有条件不变时(仅仅只有结构温度和结构健康状态发生变化)识别结构(环境)温度和结构健康状态的变化,目前还没有一种公开的、有效的方法能够同时识别结构承受载荷、结构(环境)温度和结构健康状态的变化,或者说在结构所承受的载荷和结构(环境)温度同时变化时,还没有有效的方法能够识别结构健康状态的变化,而结构承受的载荷和结构(环境)温度是常常变化的,所以如何在结构承受的载荷和结构(环境)温度变化时,剔除载荷变化和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别结构的健康状态的变化,是目前迫切需要解决的问题,本方法公开了一种方法,在支座有线位移时,可以在索结构承受的集中载荷和结构(环境)温度发生变化时,剔除支座线位移、载荷变化和结构温度变化对索结构健康状态识别结果的影响,基于被监测量监测来识别受损索,对索结构的安全具有重要的价值。同样的,在目前公开的方法中,还没有出现能够剔除支座线位移、结构温度变化和支承索健康状态影响的、从而实现集中载荷变化程度的正确识别的方法,而对结构来说,载荷变化的识别也是非常重要的;本方法在识别出受损索的同时,还能同时识别出集中载荷的变化,即本方法能够剔除支座线位移、结构温度变化和支承索健康状态变化的影响,实现集中载荷变化程度的正确识别;本方法还能够剔除载荷变化、索结构健康状态变化和结构温度变化对索结构支座线位移识别结果的影响,从而准确地识别索结构支座线位移。也就是说,本方法实现了已有方法不可能具备的三种功能。
技术实现思路
技术问题:本方法公开了一种方法,实现了已有方法不可能具备的三种功能,分别是,一、剔除支座线位移、集中载荷变化和结构温度变化对索结构健康状态识别结果的影响,从而准确地识别出支承索的健康状态;二、本方法在识别出受损索的同时,还能同时识别出集中载荷的变化,即本方法能够剔除支座线位移、结构温度变化和支承索健康状态变化的影响,实现集中载荷变化程度的正确识别;三、本方法还能够剔除载荷变化、索结构健康状态变化和结构温度变化对索结构支座线位移识别结果的影响,从而准确地识别索结构支座线位移。技术方案:本方法由三部分组成。分别是建立结构健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测被监测量的结构健康状态评估方法、健康监测系统的软件和硬件部分。在本方法中,用“支座空间坐标”指称支座关于笛卡尔直角坐标系的X、Y、Z轴的坐标,也可以说成是支座关于X、Y、Z轴的空间坐标,支座关于某一个轴的空间坐标的具体数值称为支座关于该轴的空间坐标分量,本方法中也用支座的一个空间坐标分量表达支座关于某一个轴的空间坐标的具体数值;用“支座角坐标”指称支座关于X、Y、Z轴的角坐标,支座关于某一个轴的角坐标的具体数值称为支座关于该轴的角坐标分量,本方法中也用支座的一个角坐标分量表达支座关于某一个轴的角坐标的具体数值;用“支座广义坐标”指称支座角坐标和支座空间坐标全体,本方法中也用支座的一个广义坐标分量表达支座关于一个轴的空间坐标或角坐标的具体数值;支座关于X、Y、Z轴的坐标的改变称为支座线位移,也可以说支座空间坐标的改变称为支座线位移,本方法中也用支座的一个线位移分量表达支座关于某一个轴的线位移的具体数值;支座关于Χ、y、ζ轴的角坐标的改变称为支座角位移,本方法中也用支座的一个角位移分量表达支座关于某一个轴的角位移的具体数值;支座广义位移指称支座线位移和支座角位移全体,本方法中也用支座的一个广义位移分量表达支座关于某一个轴的线位移或角位移的具体数值;支座线位移也可称为平移位移,支座沉降是支座线位移或平移位移在重力方向的分量。首先确认索结构承受的可能发生变化的集中载荷的数量。根据索结构所承受的集中载荷的特点,确认其中“所有可能发生变化的集本文档来自技高网...
【技术保护点】
混合监测的受损索集中载荷支座线位移识别方法,其特征在于所述方法包括:a.为叙述方便起见,本方法统一称被评估的支座线位移分量、支承索和集中载荷为被评估对象,设被评估的支座线位移分量的数量、支承索的数量和集中载荷的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;确定混合监测时指定的将被监测索力的支承索,设索系统中共有Q根支承索,索结构的被监测的索力数据由索结构上M1个指定支承索的M1个索力数据来描述,索结构索力的变化就是所有指定支承索的索力的变化;每次共有M1个索力测量值或计算值来表征索结构的索力信息;M1是一个不小于0不大于Q的整数;确定混合监测时指定的将被监测应变的被测量点,索结构的被监测的应变数据可由索结构上K2个指定点的、及每个指定点的L2个指定方向的应变来描述,索结构应变数据的变化就是K2个指定点的所有被测应变的变化;每次共有M2个应变测量值或计算值来表征索结构应变,M2为K2和L2之积;M2是不小于0的整数;确定混合监测时指定的将被监测角度的被测量点,索结构的被监测的角度数据由索结构上K3个指定点的、过每个指定点的L3个指定直线的、每个指定直线的H3个角度坐标分量来描述,索结构角度的变化就是所有指定点的、所有指定直线的、所有指定的角度坐标分量的变化;每次共有M3个角度坐标分量测量值或计算值来表征索结构的角度信息,M3为K3、L3和H3之积;M3是一个不小于0的整数;确定混合监测时指定的将被监测的形状数据,索结构的被监测的形状数据由索结构上K4个指定点的、及每个指定点的L4个指定方向的空间坐标来描述,索结构形状数据的变化就是K4个指定点的所有坐标分量的变化;每次共有M4个坐标测量值或计算值来表征索结构形状,M4为K4和L4之积;M4是一个不小于0的整数;综合上述混合监测的被监测量,整个索结构共有M个被监测量,M为M1、M2、M3和M4之和,定义参量K,K为M1、K2、K3和K4之和,K和M不得小于被评估对象的数量N;为方便起见,在本方法中将本步所列出的M个被监测量简称为“被监测量”;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,可以查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年来的索结构所处环境的温度关于海拔高度的最大变化率ΔTh,为方便叙述取ΔTh的单位为℃/m;在索结构的表面上取“R个索结构表面点”,取“R个索结构表面点”的具体原则在步骤b3中叙述,后面将通过实测得到这R个索结构表面点的温度,称实测得到的温度数据为“R个索结构表面温度实测数据”,如果是利用索结构的传热学计算模型,通过传热计算得到这R个索结构表面点的温度,就称计算得到的温度数据为“R个索结构表面温度计算数据”;从索结构所处的最低海拔到最高海拔之间,在索结构上均布选取不少于三个不同的海拔高度,在每一个选取的海拔高度处、在水平面与索结构表面的交线处至少选取两个点,从选取点处引索结构表面的外法线,所有选取的外法线方向称为“测量索结构沿壁厚的温度分布的方向”,测量索结构沿壁厚的温度分布的方向与“水平面与索结构表面的交线”相交,在选取的测量索结构沿壁厚的温度分布的方向中必须包括索结构的向阳面外法线方向和索结构的背阴面外法线方向,沿每一个测量索结构沿壁厚的温度分布的方向在索结构中均布选取不少于三个点,测量所有被选取点的温度,测得的温度称为“索结构沿厚度的温度分布数据”,其中沿与同一“水平面与索结构表面的交线”相交的、“测量...
【技术特征摘要】
【专利技术属性】
技术研发人员:韩玉林,叶磊,韩佳邑,
申请(专利权)人:东南大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。